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Abstract 

Background: Foot-and-Mouth Disease Virus (FMDV) is a positive-sense RNA virus of the family of the picornaviridæ 
that is responsible for one of the livestock diseases with the highest economic impact, the Foot-and-Mouth Disease 
(FMD). FMD is endemic in Rwanda but there are gaps in knowing its seroprevalence and molecular epidemiology. This 
study reports the FMD seroprevalence and molecular characterization of FMDV in Eastern Rwanda.

Results: The overall seroprevalence of FMD in the study area is at 9.36% in cattle and 2.65% in goats. We detected 
FMDV using molecular diagnostic tools such as RT-PCR and RT-LAMP and the phylogenetic analysis of the obtained 
sequences revealed the presence of FMDV serotype SAT 2, lineage II. Sequencing of the oropharyngeal fluid samples 
collected from African buffaloes revealed the presence of Prevotela ruminicola, Spathidium amphoriforme, Moraxella 
bovoculi Onchocerca flexuosa, Eudiplodinium moggii, Metadinium medium and Verrucomicrobia bacterium among other 
pathogens but no FMDV was detected in African buffaloes.

Conclusions: We recommend further studies to focus on sampling more African buffaloes since the number sam-
pled was statistically insignificant to conclusively exclude the presence or absence of FMDV in Eastern Rwanda buf-
faloes. The use of RT-PCR alongside RT-LAMP demonstrates that the latter can be adopted in endemic areas such as 
Rwanda to fill in the gaps in terms of molecular diagnostics. The identification of lineage II of SAT 2 in Rwanda for the 
first time shows that the categorised FMDV pools as previously established are not static over time.
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Background
Foot-and-Mouth Disease Virus (FMDV) is a positive-
sense RNA virus of the family of the picornaviridæ [1]. 
Based on the most variable part of the capsid, the VP1, 
FMDV is classified into seven serotypes (SAT1, SAT2, 

SAT3, O, A, C and Asia1) which are also subdivided 
into topotypes [2, 3]. Vaccination against one serotype 
does not confer protection against a different serotype 
and multivalent vaccines are often used [4–6]. Due to 
the constant change of this virus, a consistent molecu-
lar analysis is of paramount importance to improve the 
vaccines. Understanding the serological and molecu-
lar epidemiology of FMDV in Rwanda is very impor-
tant because East Africa is considered to have the most 
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divergent Foot-and-Mouth Disease (FMD) situation in 
the world [7].

In this study, we characterized the FMDV strains 
responsible for FMD outbreaks in Rwanda in 2017 and 
FMD seroprevalence in 2020. Molecular diagnostics 
were performed using Reverse Transcription Polymer-
ase Chain Reaction (RT-PCR) and the pen-side Reverse 
Transcription Loop-Mediated Isothermal Amplification 
(RT-LAMP) chargeable and portable machine, the Axxin 
T8 isothermal instrument. This was complemented by 
sequencing the strains responsible for the 2017 FMD 
outbreaks in Eastern Rwanda. Moreover, we are present-
ing the serological situation of FMDV in large and small 
ruminants from the Eastern Province of Rwanda. These 
data will be crucial in policy guidance but also in study-
ing risk factors. African buffaloes (Syncerus caffer) known 
to be natural wildlife reservoirs of FMDV were sampled 
[8, 9]. Though we did not isolate FMDV in African buffa-
loes, we identified other pathogens and commensals. To 
our knowledge, there is no published research on FMD 
seroprevalence in Rwanda and the latest available FMD 
molecular characterization results are from the 2001 
FMD outbreak [10, 11].

Results
Seroprevalence
We collected samples from adult cattle and goats as fol-
lows: 823 cattle sera samples and 188 goat sera samples 
in 4 districts of the Eastern Province of Rwanda. In the 
3ABC ELISA (ID Screen® FMD NSP Competition, ID-
VET, Grabels, France) the overall prevalence was 9.36% 
(77/823, CI 95%: 7.5%-11.6%) in cattle and 2.65% (5/188, 
CI 95%: 0.9%-6.1%) in goats. The seroprevalence distri-
bution in bovine was as follows; 8.6% (55/639, CI 95%: 
6.5%-11.1%) in Bugesera and 11.96% (22/184, CI 95%: 

7.6%-17.5%) in Nyagatare. In caprine, the seroprevalence 
was at 2.77% (4/144, CI 95%: 0.8%-7%) in Bugesera and 
2.27% (1/44, CI 95%: 0.8%-7%) in Kayonza. The raw data-
sets presenting optical density to support these results 
are available at https:// figsh are. com/s/ dbc28 201ea cecf5 
f2183.

Reverse transcription polymerase chain reaction (RT‑PCR)
The 2017 FMD outbreak samples from Eastern Rwanda 
were analysed by RT-PCR. The 1-step RT-PCR assays 
performed on the samples collected from the field sam-
ples demonstrated 6 out of 9 oropharyngeal (OP) sam-
ples positively identifying infection with the FMD virus. 
Select PCR positive samples are displayed in Fig. 1 and an 
increase in fluorescence intensity (Relative Fluorescence 
Units or RFU) was detected before the threshold of 32.0 
cycles of amplification. Samples 8 and 26 representing 
Gatsibo and Nyagatare districts respectively were par-
ticularly chosen for further analysis. Figure  2 illustrates 
the triplicates results of select samples.

Reverse transcription loop‑mediated isothermal 
amplification (RT‑LAMP)
The RT-LAMP assay analysis revealed positive FMD 
detection consistent with results revealed by real-time 
PCR profile detection from the samples collected in the 
field. The time trial fluorescence graphs are represented 
in Fig. 3 and the gel-based detection in Fig. 4. The LAMP 
products gel displays a mixture of stem-loop DNA mole-
cules of different sizes, a typical ladder pattern with many 
bands of different sizes. The successful amplification 
is indicated by the bands becoming darker in the later 
stages of the gel running. The obtained pattern is simi-
lar to the one obtained by Ding et al. to diagnose FMDV 
serotype C [12].

Fig. 1 One-Step RT-PCR analysis. Amplification curves illustrating some of the select positive samples

https://figshare.com/s/dbc28201eacecf5f2183
https://figshare.com/s/dbc28201eacecf5f2183
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Sequencing and phylogenetic inference
The oropharyngeal fluids (OPF) sampled from African 
buffaloes were subjected to non-targeted next-gener-
ation sequencing and the Raw data files are available at 

the Sequence Read Archive (SRA), NCBI and data infor-
mation can be found at the BioProject (PRJNA865910). 
Based on BLAST searches of the contigs generated 
through sequencing (each > 400 bp in length), FMDV was 

Fig. 2 Early triplicates of sample 8 (from Gatsibo) and sample 26 (from Nyagatare)

Fig. 3 RT-LAMP results. a: trial time of fluorescence detection and b: the second derivative

Fig. 4 RT-LAMP cropped gel detection of sample duplicates. Lane M, DNA marker, 1–4, select positive samples
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not present in these OPF samples. However, many of the 
contigs showed significant alignment to other pathogens 
and commensals (Fig.  5), suggesting that African buf-
faloes may be reservoirs of other infectious diseases of 
interest that can infect domestic ungulates in Rwanda.

We identified Bibersteinia trehalosi [Accession No. 
SAMN30146891] in 1/7 African Buffaloes. This Gram-
negative bacterium can cause systemic infection in 
sheep [13] and other species such as goats and cat-
tle [14–16] and reared bison (Bison bison) [15, 17]. Yet, 
another isolated bacterium from 3/7 buffaloes was 
Moraxella bovoculi [Accession No. SAMN30146892 and 
SAMN30146888], responsible for infectious bovine ker-
ato-conjunctivitis [18]. This implies the presence in the 
region of the most important vector of this bacterium, 
face flies (Musca autumnalis) [19]. Mannheimia varigena 
[Accession No. SAMN30146890] found in 1/7 buffaloes, 

is a bacterium that has a big range of host species [20] 
and is known for causing haemorrhagic septicaemia 
(HS) in cattle and water buffaloes. M. varigena has been 
reported to have a significant economic impact in Asia 
[21] and as the agent causing HS in African buffaloes 
[22].

Haemophilus sp. [Accession No. SAMN30146889] 
was also isolated in 1/7 of the sampled buffaloes. This 
blood-sucking nematode (hence the genus name) has 
been associated with anaemia, oedema and weight loss, 
and severe infections can result in death, particularly 
among young animals [23, 24]. Finding Haemophilus in 
Rwandan wildlife is consistent with its geographical loca-
tion in a tropical and temperate region. Since this para-
site was identified with NGS, clear differentiation was 
possible from H. similis, which is difficult to distinguish 
morphologically. In addition to the three pathogens and 

Fig. 5 Sequenced contigs in A. buffaloes based on the top-scoring BLAST match for each contig
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two parasites detected, various commensals were also 
identified, with the most predominant being Prevotella 
ruminicola [Accession No. SAMN30146884], followed by 
Eudiplodinium maggii [Accession No. SAMN30146886]. 
No previous study has reported commensals in African 
buffaloes (Syncerus caffer caffer) of Rwanda or other wild 
ruminants. The presence of commensals such as entero-
cocci in African buffaloes might play a considerable role 
in antimicrobial resistance both in wild and domestic 
animals [25], future investigations need to explore it. The 
commensals and parasites identified in this study most 
likely originated from different water sources in the park 
as it has been suggested in other studies [26, 27]. These 
watering points may be shared with livestock and humans 
and an infection from one species to another is plausible. 
In addition, Treponema sp. [Accession: SAMN30146887] 
and Bacteriodes sp. [Accession: SAMN30146885] were 
also found.

FMDV whole genome was sequenced from OPF clini-
cal samples collected from cattle and the sequences are 
available upon request to the corresponding author.

Phylogenetic analyses of VP1 proteins from this study 
and prototypes available online at the national center 
for biotechnology information (www. ncbi. nlm. nih. gov) 
showed that the isolated viruses belonged to SAT 2. The 
generated tree (Fig. 6) shows a clade comprising a virus 
isolated from Zimbabwe in 1948 (sat2-1rhod_iso26) 
on one side. On the second branch of that clade, is this 
study’s isolate from Nyagatare district (Rwanda) in 2017 
and another sub-branch comprising viruses from Kenya 
isolated in 1984 (KEN/1/84) and Ethiopia isolated in 
1990 (ETH/1/90) and a virus isolated in Gatsibo district 
(Rwanda) in 2017. The evolutionary distance shows that 
the isolates from Rwanda have the smallest branch length 
followed by isolates KEN/1/84 and ETH/1/90 in East 
Africa.

Discussion
Seroprevalence
The detection of antibodies to NSP such as the highly 
conserved 3ABC is widely used to determine the FMDV 
seroprevalence [28]. In our 2020 study, we were not able 
to get information on seroprevalence for the study on 
FMD risk factors in Eastern Rwanda [29], therefore this 
study sets a baseline to get first-hand FMD seroepide-
miological information in cattle and small ruminants in 
Eastern Rwanda. With 3ABC ELISA (Enzyme-Linked 
Immunosorbent Assay), antibodies against FMDV were 
detected at the sero prevalence of 9.36% and 2.65% in 
cattle and in goats respectively. The higher prevalence in 
cattle may be explained by the fact that viral replication 

is expected to be more luxuriant and more persisting in 
cattle than in small ruminants [30].

A sero-surveillance study in wild FMD-susceptible 
animals would be valuable to understand the role played 
by the wild animals. Moreover, we observed that in the 
visited farms in Bugesera there were many on-site water 
resources and fodder banks that decreased the risk of 
animals roaming outside the farms. This could have con-
tributed to the lower seroprevalence in Bugesera as com-
pared to Nyagatare.

Cattle samples
Regions in Eastern Rwanda, at the border between 
Uganda and Tanzania, are at risk of transnational or 
transboundary circulation of the FMD virus. We char-
acterised the strains responsible for the 2017 FMD out-
break as SAT 2. This serotype appears to be the most 
predominant serotype in Sub-Saharan Africa [31, 32]. It 
is probably possible that the uncontrolled transboundary 
livestock movements in this region could be contributing 
to the presence of the current circulating FMDV strains 
that are identified in this area.

Reverse Transcription Polymerase Chain Reaction (RT‑PCR)
Amplification using specific primers targeting FMDV 
SAT2 serotype revealed the presence of serotype SAT 2 
in the OP samples. Although FMDV SAT 2 appears to 
be the most predominant in East Africa in general [33], 
the majority of outbreaks in Kenya have been caused by 
serotypes O and SAT2 [34], in Uganda by serotype O 
and SAT 2 while in Rwanda the last reported outbreak 
in 2004 belonged to serotype O [35]. The current finding 
shows that that SAT2 was responsible for the 2017 FMD 
outbreak. This calls for the need to incorporate SAT 
2 virus strains in vaccines that may be used in Rwanda 
areas if a regionally coordinated vaccination campaign is 
to be carried out.

Reverse transcription loop‑mediated isothermal 
amplification (RT‑LAMP)
This method relies on auto-cycling strand displacement 
DNA synthesis that is performed by DNA polymerase 
with high strand displacement activity and a set of two 
specially designed inner and two outer primers [36].

FMDV constant molecular diagnostics allow a better 
understanding of circulating strains for a smarter vac-
cination. In this study, we have confirmed what other 
studies have established that LAMP technology can be 
an alternative to traditional PCR since it is very portable 
and can yield reliable results. Our LAMP results have 
shown that SAT 2 serotype was responsible for the 2017 

http://www.ncbi.nlm.nih.gov
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outbreak, this in concordance with PCR results. This 
assay has been previously used in Southern Africa suc-
cessfully on FMDV SATs serotypes [37].

The LAMP technology can be very useful for a point-
of-care detection during an active outbreak to detect 
FMDV while sampling is still going on. The Axxin T8 

Fig. 6 A Bayesian analysis showing different clades of SAT serotypes. Rwanda isolates are squared in red
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being a portable device with batteries make it suitable 
to be used in mobile laboratories and since RT-LAMP 
skips the cDNA synthesis step and the extraction step 
for some samples such as blood [38, 39], it is much more 
fit for Low-and-Middle Income Countries and decreases 
the risk of contamination [40]. RT-LAMP has proved 
to detect positive samples and within 30  min we were 
able to molecularly diagnose FMDV which would take 
a much longer time with laborious manipulations when 
diagnosing with RT-PCR. Also, RT-LAMP is better for 
blood samples because it is not hindered by inhibitory 
substances [40]. Recently, Mahapatra et al. have demon-
strated that LAMP’s concordance with RT-qPCR reaches 
100% [41]. This pen-side, rapid and cost-effective tech-
nology can be of great importance to quickly identify an 
outbreak and quarantine the area for further investiga-
tion. The democratisation of such technologies would 
fill the gap of lack of proper knowledge on circulating 
strains in Eastern Rwanda and other countries with simi-
lar challenges.

Sequencing and phylogenetic inference
We did not detect FMDV in the seven samples of the 
African buffaloes randomly selected from the Nyamirama 
area inside the Akagera National Park in Rwanda by 
total RNA sequencing without prior amplification and 
De Novo sequence assembly. In South Africa, a pattern 
of infection from wildlife animals considered as natural 
reservoirs to livestock has been established, particularly 
African buffaloes (Syncerus caffer) [42, 43]. However, in 
Uganda Dhikusooka et al. were not able to confirm this 
in cases of SAT 3 and SAT 1 [44]. In South Africa, physi-
cal separation consisting of electro-fencing of parks and 
movement restriction combined with effective vaccina-
tion campaigns [45, 46] have assisted in reducing out-
breaks from cross-infection and FMD control. However, 
in East Africa, few studies have been carried out on the 
circulating strains of FMDV, which constitutes a knowl-
edge gap that prevents any conclusions that such meas-
ures have been similarly effective in this region. In 1979, 
SAT 3 was detected in African buffaloes in Queen Eliz-
abeth National Park and in 2013 a healthy long-horned 
calf that grazed near this park [44]. But even then, the 
finding could not prove the possibility of cross infec-
tion between buffaloes and cattle that intermingled in 
Uganda, an area that is very close to Rwanda.

Several reports have demonstrated that African buf-
faloes play an important role in the epidemiology of the 
SAT serotypes of FMDV [47–49]. In the present study, 
the sampled buffaloes had been enclosed inside the park 
and separated from farm access with an electrical fence 
since 2013 [50]. Although there is a need for a greater 
number of buffalo samples to be analysed, the results of 

our study suggest that the series of outbreaks observed in 
Eastern Rwanda between 2000 and 2017 may be arising 
from different sources, probably from transboundary and 
intra-national livestock movements as well as proximity 
with unvaccinated small ruminants although this is not 
proved yet. These factors would contribute to virus per-
sistence in the area because FMDV can be recovered in 
small ruminants up to 9 months post-infection [51].

Our results suggest that the isolated virus in Rwanda 
may have evolved and circulated from Zimbabwe to 
East Africa (Kenya) and spread in two branches North-
ward to Ethiopia and Southward to Rwanda. The 2017 
sequences are quite different from the sequences previ-
ously characterized in Rwanda (isolate RWA/1/00) and 
in the neighbouring Democratic Republic of Congo 
(isolate ZAI/01/74). This shows the complexity of circu-
lating strains in this region and considering that many 
outbreaks are unnoticed and or unreported, more strains 
might be circulating.

Conclusion
While there were no FMDV pathogens isolated in Afri-
can buffaloes, the whole genome sequencing revealed the 
presence of other pathogens that could also cross infect 
cattle. The plethora of pathogens identified from the buf-
falo gut is a signal to the livestock health department to 
establish whether some of the challenges they are facing 
do arise from the interactions that exist between domes-
tic animals and wildlife at this interface.

The 2017 FMD outbreak in Eastern Rwanda was caused 
by SAT 2 serotypes and the VP1 phylogenetic analysis of 
the 2017 sequences showed for the first-time evidence 
of the presence of SAT 2 lineage II in Rwanda. This find-
ing highlights the probable incursion of new FMD virus 
strains in the country. However, it was not possible to 
establish whether the origin was from wildlife or domes-
ticated animal that are involved in the intercountry trade 
markets.

It is noteworthy to recognise that the RT-LAMP diag-
nostic tools that was used in this area can be a reliable 
rapid, and cost-effective alternative method for field 
detection of FMD in this country. This is because this 
technology does not require high molecular biology skills 
to be operated and thus can be promoted for use by a big-
ger number of field animal health workers.

Methods
Sampling techniques and source of animals
Seven (n = 7) healthy-looking mature African buf-
faloes were randomly immobilized inside the park in 
Nyamirama area. They were darted with a tranquiliser 
from a 4 × 4 vehicle using a JM Special dart gun with a 
13 mm barrel loaded with a 2 mL Pneu-Dart and then 
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injected with a 3.8  cm barbed needle using a spring-
loaded pole syringe (Dan-Inject). The animals were 
darted in the hindquarters with 8  mg etorphine and 
48 mg azaperone [52], that brought them down in ster-
nal recumbence. After falling down, their faces were 
covered up to the ears with a cloth tissue, to avoid early 
wake-up. We then gave them 150  mg of Ketamine to 
increase muscle relaxation and jaw-bone movements. 
After going down, they received an additional 200  mg 
ketamine IV and 2 mg etorphine with 40 mg azaperone 
IM to quicken early waking up. After sample collection, 
these buffaloes were roused with up to 20 mg diprenor-
phine and 100  mg naltrexone given intravenously [52, 
53]. Throughout the sample collection, we monitored 
the buffaloes’ breathing and no animal needed a res-
pirator stimulant or partial antagonism. We collected 
OPF and scraps using a probang cup and transferred 
the samples to sterile tubes containing an equal amount 
of transport media. We inserted a probang cup in the 
OP tract and vigorously passed it with back-and-forth 
movements at least 5–10 times between the first por-
tion of the oesophagus and the back of the phar-
ynx. Tubes had equal amounts of glycerol and 0.04  M 
phosphate buffer (pH 7.2–7.6) containing 1 × antibi-
otic–antifungal mixture (Thermo-Fisher Scientific, 
Johannesburg, South Africa) [54, 55]. Between OPF 
collection from one animal to the next using the OIE 
three-bucket washing system slightly modified [54, 55]. 
We washed the probang cup in a bucket containing 
0.3% citric acid, rinsed it in another bucket with water 
and lastly disinfected the cup in Phosphate-buffered 
Saline. The sample tubes were topped up to contain an 
equivalent volume of transport medium to that of the 
sample.

Following the described methodology above, in July 
2017, we collected from crossbred (Ankole x Jersey) 
cattle (n = 9) OPF and scraps from cattle in the Gat-
sibo and Nyagatare districts during the 2017 FMD out-
break. Samples were collected from animals presenting 
clinical signs such as blisters on the mouth or the foot. 
Collecting samples from animals, as described later in 
this section, was done in compliance with guidelines 
provided in the USDA’s Foreign Animal Disease Inves-
tigation Manual [56] and approved by the Rwanda Agri-
culture Board. We transported samples in cooler boxes 
on ice from the field to the Virology Laboratory of the 
Rwanda Agriculture and Animal Resources Develop-
ment Board located in Kigali, Rwanda and stored them 
at − 80 °C until further processing. The animals used in 
this study were African buffaloes (Syncerus caffer) from 
the Akagera National Park, healthy-looking Cattle and 
Goats from individual farms in Eastern Rwanda and 
Cattle from one infected farm in Eastern Rwanda.

Serological analyses
Sera samples were randomly collected from three dis-
tricts of the Eastern province during surveillance. 
Samples were stored at -20  °C for less than one week 
before analysis. We used the ID Screen® FMD NSP 
Competition Kit (ID.Vet, Grabels, France) according 
to the manufacturer’s instructions to detect the non-
structural protein 3ABC in serum. The test was applied 
to samples from cattle (Bos taurus) (n = 823) and goats 
(Capra aegagrus hircus) (n = 188) collected in the East-
ern Province of Rwanda.

Reverse transcription polymerase chain reaction
RNA extraction and cDNA synthesis
RNA was manually extracted using the PureLink Viral 
RNA/DNA Kit according to manufacturer’s instruc-
tions. We added 200 μL of OPF sample to a Kit Master 
Mix (proteinase K, lysis buffer, carrier RNA, and 100% 
ethanol). We performed a two-step wash using a wash 
buffer solution, and eluate in 60 μL nuclease-free water 
was collected and transferred to 1.5 ml tubes. We treated 
the eluate with DNase using the Turbo DNA-free Kit and 
kit manual, to remove host genomic DNA. Thereafter, 
we collected 50 μL of DNA-free eluate and transferred it 
to 1.5 mL tubes for downstream analyses. We quantified 
the nucleic material in the collected solutions using the 
Quantus™ Fluorometer. The SuperScript VILO cDNA 
Synthesis Kit and kit manual were used for the conver-
sion of RNA extracted manually, and 20 μL from that 
extracted using the KingFisher Duo machine, to cDNA. 
We added 10 μL of RNA eluate to a master mix contain-
ing 5X VILO reaction mix, 10X SuperScript enzyme mix 
and nuclease-free water. Complementary DNA synthesis 
was achieved at 42 °C for 60 min. Thereafter, we cleaned 
up the cDNA using the Macherey–Nagel™ Nucleospin 
Gel and PCR Clean-up Kit and kit manual. Finally, we 
added 50 μl cDNA to Buffer NE, Buffer NT1, and Buffer 
NT3 following the methodology detailed in the kit 
manual.

RT‑PCR
Primers
We adopted primers and probes of the recommended 
protocol by the World Reference Laboratory for FMD 
(WRLFMD) for amplification (conventional PCR) and for 
VP1 sequencing. These primers are designed to detect all 
the seven serotypes of FMDV and do not amplify other 
viruses including viruses similar to FMDV responsible 
for vesicular diseases [57]. The rRT-PCR primers used in 
this study are described in Table 1.

Considering the primers we used for amplifying SAT2 
VP1 portions, Table  2 displays the primers that are, 
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according to the WRLFMD, appropriate to be used for 
sequencing.

Amplification
The OP samples from the 2017 FMD outbreak were ana-
lysed using a multiplex one-step RT-PCR assay. The assay 
was performed using the TaqMan® Fast Virus 1-Step 
Kit (Life Technologies) and kit manual. We added 2 μL 
of eluate extracted in the manual extraction section to a 
Master Mix containing nuclease-free water, 4X TaqMan 
buffer, primers and TaqMan probe. The thermal cycler 
(BioRad, Hercules, California) was programmed as fol-
lows; reverse transcription at 50  °C for 5 min; polymer-
ase activation and DNA denaturation at 95  °C for 20  s; 
two-step amplification for 40 cycles with denaturation at 
95 °C for 3 s; annealing and plate read at 60 °C for 30 s.

We analysed the PCR reaction to observe any positive 
FMD identification from the OPF samples collected and 
to compare the results obtained to those from the posi-
tive high and low standard controls. Reactions were con-
sidered positive if the amplification was detected before 
32.0 cycles [59].

Before sequencing, we removed the primers and deox-
ynucleoside by enzymatically adding the ExoSAP-IT PCR 
Product Cleanup Reagent (0.5 μl of Exo and 2 μl of SAP) 
to 10  μl of amplicons. The mix was incubated at 37  °C 
for 15 min and later 85 °C for 15 to activate Exo and SAP 
respectively, lastly, the product was held at 4 °C.

Reverse transcription loop‑mediated isothermal 
amplification (RT‑LAMP)
Amplification was performed on the Axxin T8–
ISO instrument at 65  °C for 30  min. The assays were 

performed using the Isothermal Master Mix. Briefly; 6.5 
μL cDNA was added to an FMD LAMP primer mix and 
isothermal master mix. The RT-LAMP assay we used 
was not specific for any serotype, it could only assess if a 
sample is positive or negative. Amplified products were 
detected both in real-time and by running an electro-
phoresis-based gel. The 2% agarose gel bands were read 
under U.V. light after staining with ethidium bromide. 
Primers and probes were used according to the manu-
facturer’s instructions (Tokabio (Pty) Ltd, Johannesburg, 
South Africa), they are available upon request from the 
corresponding author.

Sequencing and Phylogenetic inference
We conducted the Whole Genome sequencing of the 
African buffaloes’ samples without necessarily running 
a genome-specific PCR amplification. We processed the 
buffalo samples with the PureLink® Viral RNA/DNA 
Mini Kit (Invitrogen, Carlsbad, CA) and treated them 
with the Turbo DNA-free™ Kit (Ambion, TX, USA) to 
remove any residual host DNA. We then used the Super-
script VILO cDNA Synthesis Kit (Invitrogen, Carlsbad, 
CA) to generate cDNA from the isolated RNA.

NGS libraries were prepared from the samples with 
the Ion Xpress™ Plus Fragment Library Builder Kit on 
the AB Library Builder system (Life Technologies). Each 
sample was uniquely barcoded during library prepara-
tion using the Ion Xpress Barcode Adapters 1–16 Kit. 
We performed template preparation with the Ion PGM 
Template OT2 200 Kit and the OneTouch 2 instrument, 
and the samples were sequenced on the Ion PGM next-
generation sequencer using the Ion PGM Sequencing 200 
Kit. All reagents and instruments were purchased from 

Table 1 List of primers used for a rRT-PCR for the detection of FMDV in this study [58]

Primer/probe Oligo name Primer sequence 5’‑3’ Genome direction Working 
concentration

Forward primer 3DF ACT GGG TTT TAC AAA CCT GTGA Forward 10 pmol/μl

Reverse primer 3DR GCG AGT CCT GCC ACGGA Reverse 10 pmol/μl

Taqman probe 3DP TCC TTT GCA CGC CGT GGG AC Probe 5 pmol/μl

Table 2 List of oligonucleotide primers used for SAT2 VP1 sequencing

Primer name Sequence (5’ – 3’) Genome direction Gene

SAT2-D GGT GCG CCG TTG GGT TGC CA Reverse VP1

SAT2–1D209aF CCA CTT ACT ACT TTT GTG ACC TTG A Forward

SAT2–1D209bF CCA CCT ACT ACT TTT GTG ACC TTG A

SAT2–1D209cF CCA CCT ACT ATT TCT GTG ACC TGG A

SAT2–1D209dF CCA CGT ACT ACT TCT GTG ACC TGG A
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Thermo Fisher Scientific, Johannesburg, South Africa. 
Data were analysed with CLC Genomics Workbench 
Software v.10 (Qiagen Bioinformatics, Redwood City, 
CA, USA) and the NCBI database with the BLAST tool 
(https:// blast. ncbi. nlm. nih. gov/ Blast. cgi). Alongside the 
sequences produced by this study, we retrieved FMDV 
SAT prototype sequences from the National Center for 
Biotechnology Information (NCBI).

Using the NGphylogeny.fr platform, select SAT isolates 
were aligned with MAFFT version 7 [60] and cleaned 
by Gblocks [61, 62], using the MrBayes using the GTR 
model [63] embedded software trees were constructed 
and visualised by Newick display [64].
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