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ABSTRACT
The unhairing stage of leather processing is associated with the production of significant amounts of solid and 
liquid wastes. The use of enzymes to replace the polluting sulphides currently used for unhairing is a viable 
alternative. Various proteases from different Bacillus cereus strains as well as many other bacterial strains 
have been used successfully for the unhairing of skins. However, no previous work has assessed the use of the 
crude alkaline protease extract from Bacillus cereus strain 1-p, a novel Bacillus cereus strain obtained from the 
shores of Lake Bogoria - a soda lake in Kenya – in the unhairing of goatskins. This study, therefore, evaluates 
the potential of the protease extract from the Bacillus cereus strain 1-p to unhair goatskins. 

Optimum variables for unhairing using the protease were investigated. Complete unhairing was achieved within 
12 hours at 27°C and pH 12 using the crude enzyme. The period and temperature required for complete unhairing 
were significantly lower than that of other enzymatic unhairing techniques. Compared to the leather unhaired 
with sulphide, the leather unhaired with the enzyme did not only show superior organoleptic properties but 
also recorded comparable or superior physical properties, namely tensile strength (26.94 N/mm2), percentage 
elongation (76.29%), tear strength (43.59 N/mm), and distension at grain crack and burst (7.9 mm and 8.2 
mm respectively). The wastewater from the enzymatic unhairing process recorded a significant reduction 
in biochemical oxygen demand (78%), chemical oxygen demand (83%), and the wastewater volume (50%) 
compared to the process that uses sulphide. It was concluded that the use of the crude protease extract from 
the Bacillus cereus strain 1-p in unhairing goatskins is feasible.
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INTRODUCTION

Leather is a valuable prehistoric natural commodity that is being used in modern times, and plays an indis-
pensable economic role globally. Leather and finished leather products are estimated to have a global value 
of about USD 100 billion annually [1]. In the year 2013, footwear made of leather accounted for approxi-
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mately USD 53.5 billion [2]. Despite making such substantial contributions towards economic development, 
the leather industry is blamed for severe environmental pollution resulting from the application of toxic 
agents in processing of hides and skins [3]. Leather processing entails the transformation of the biodegrad-
able rawhide/skin into leather, a non-biodegradable product. This is through a series of processing stages 
that can be summarized into pre-tanning, tanning and post tanning [4,5]. 
The initial stages of leather processing generate 80–90% of wastes produced from tanneries [6]. Unhairing 
is a pre-tanning step in leather processing where toxic sulphide chemicals are used. This stage is thus asso-
ciated with major environmental pollution. In the conventional unhairing technique, hides and skins are 
exposed to an extreme chemical treatment using lime and sodium sulphide that breaks down the hair and 
epidermal structures to remove them from the hide/skin [7]. As a result, this processing stage releases 
volumes of solid wastes in the form of broken epidermal structures and hair [8]. Additionally, this stage is 
responsible for air emissions that have negative effects on the environment, since some of the gases cause 
photochemical reactions, destruction of the ozone layer through the increase in greenhouse gases that lead 
to the formation of acid rain [9]. These concerns have necessitated the need for cleaner alternative tech-
nologies to eliminate the use of sulphides in the unhairing process. 
Over the years, enzyme technology has made major strides in transforming several industrial processes 
into cleaner production systems. Enzymes have been used in food, textile, detergents and soaps, bioac-
tive peptides, agricultural, cosmetic, beverage, pharmaceutical and leather industries, among others [10]. 
Microbial enzymes have been employed in tanneries for rehydration, hair removal, bating and removal of 
fats [7]. The application of enzymes for unhairing eliminates the use of the toxic sodium sulphide and can 
facilitate recovery of quality hair and fats which significantly lowers the pollution load in the effluent [10]. 
Enzymatic unhairing is associated with enormous benefits which include effective rehydration, scud loos-
ening, splitting of collagen fibres, production of a smooth grain, improved soft feel making the leather pliable, 
improved yield, and overall reduction of the production time and pollution load [12-14].
Alkaline protease enzymes have widely been researched on, especially their application in leather processing. 
The use of proteases has played a vital role in various stages of leather manufacturing from soaking to the 
finishing stage [15]. Many Bacillus species have been explored for protease production with high potential 
strains distinguished to be B. mojavensis, B. subtilis, B. licheniformis, and amyloliquefaciens [16]. Research 
done on the enzymatic unhairing using enzyme extracts from the Bacillus species have reported satisfac-
tory results on their efficacy in unhairing hides and skins [14,17-25].
Various researches have reported positive results on the use of proteases extracted from different Bacillus 
cereus strains for industrial applications such as unhairing hides and skins during leather processing. Great 
advances have been documented on the potential of Bacillus cereus BM1 protease in industrial applications, 
whereby it has proved to be thermostable and detergent compatible and, therefore, can find commercial 
applications [26]. Despite the protease�s stability at an alkaline pH range of 8-12 which would be suitable 
for unhairing, the protease required a temperature range of 40-70°C for optimum activity, a temperature 
range that is too high for raw skins. A crude enzyme extract from Bacillus cereus VITSN04, whose maximum 
activity was reported to be at 30°C and pH 8.0, was found to be effective in unhairing of goat skins during 
leather processing [24]. Despite the remarkable results, this protease required 18 hours to achieve complete 
unhairing, a rather lengthy period in a typical production line. An extracellular protease extracted from 
a thermophilic Bacillus cereus strain isolated from soil demonstrated ability to completely remove glan-
dular structures, hair and hair follicles from goatskins and cowhides at optimum conditions of pH 7.5 and 
temperature of 60°C [23]. The enzyme from this Bacillus cereus strain was not only active in the pH range of 
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6.0–9.0 but also at a relatively high-temperature range of 60-70°C, a temperature that would denature the 
raw collagen fibres in raw hides and skins during unhairing. In another study, an alkaline protease obtained 
from Bacillus cereus MCM B-326 was used to unhair a buffalo hide successfully at pH 7.0 and a temperature 
of 28 ± 2°C [27]. The protease, however, required 21 hours to achieve the complete unhairing of the hides. 
This period is quite lengthy for an ideal leather production line. A protease extracted from Bacillus cereus 
strain SZ-4 exhibited considerable hair removal capability on bovine, hircine, porcine and ovine skins within 
a period of 12 hours [28]. These were appreciable results as it was further reported that the enzyme did not 
change the structure of the dermis. The protease extract from the Bacillus cereus strain 1-p was reported to 
have successfully descaled a Nile perch skin (Lates niloticus) within a period of one hour and also reported 
positive results in the unhairing of a bull hide [25]. The results observed from the descaling process of Nile 
perch fish skins were remarkable as the descaling was achieved in a short time under a pH and tempera-
ture range that can be applied to raw skins without damaging the collagen structure. 
Although extensive research has been carried out on enzymatic unhairing using extracts from various bacte-
rial strains and more so, the Bacillus cereus, no work has been published on the enzymatic unhairing of 
goatskins by using a crude enzyme extract from a novel Bacillus cereus strain 1-p obtained from the shores 
of Lake Bogoria, a soda lake in the Rift Valley, Kenya. The working hypothesis is that the crude alkaline 
protease extracted from Bacillus cereus strain 1-p has the potential to unhair goatskins that would elimi-
nate the use of sodium sulphide during leather processing. This is aimed at finding a viable alternative to 
the toxic chemicals used in the unhairing stage of leather processing, which would make leather-making 
cleaner and translate to a more sustainable industry.

MATERIALS AND METHODS

Materials

Wet salted goatskins were purchased from a local slaughterhouse in Nairobi, Kenya. Tanning and labora-
tory chemicals were acquired locally, while the isolated bacteria were cultured and the enzyme extracted 
at the Biochemistry Laboratory, University of Nairobi. The chemicals used in this study in the laboratory 
and tannery were of analytical and commercial grade. The crude protease was prepared from a Bacillus 
cereus bacteria, strain 1-p, which had previously been isolated, cultured and identified using the analysis of 
16S r DNA sequencing method [25]. The crude protease from this bacterial strain was studied in this work 
following the positive results reported from its use in descaling of Nile perch skins [25].

Enzyme preparation

The enzyme was prepared at optimum conditions as described in a previous method [25]. A 3-litre medium 
was prepared with the following components: magnesium sulphate (MgSO4.7H2O), calcium chloride (CaCl2), 
urea, yeast, casein, glucose and distilled water. The pH was adjusted to 11.5 and left to rest for two hours 
for pH stabilization before sterilization of the media and the flasks to be used. An overnight bacterium seed 
culture (Bacillus cereus strain 1-p) in sterile distilled water was inoculated into the 3-litre medium setup 
in a bioreactor (Bioengineering RALF) set at 150 rpm, pH 11.5 and 45˚ C and incubated for 72 hours. The 
culture-medium was then obtained and centrifuged at 12,000 revolutions per minute for fifteen minutes 
to extract the supernatant. The supernatant was recovered and stored in covered flasks at 4°C awaiting 
use in the unhairing of goatskins.



www.textile-leather.com    41

NYAKUNDI JO, OMBUI JN, MULAA FJ, WANYONYI WC. Evaluation of the Bacillus cereus Strain… TLR 4 (1) 2021 38-54.

Enzyme assay

The crude protease activity was investigated under optimized variables (pH 11 and 45°C) as described by 
Wanyonyi et al. (2015) following a modification of their method. The activity was determined using casein 
as the substrate at an alkaline pH. 0.1 ml of the crude enzyme was incubated with 0.1 ml of 1% w/v casein 
in the buffer-Tris-HCl (0.2 M, pH 9.0) at 45°C for 10 min. After the completion of the incubation, the reac-
tion was terminated by addition of 4 ml of chilled trichloroacetic acid and placed on ice for 20 minutes to 
facilitate precipitation of insoluble proteins. The mixture was subsequently centrifuged for 10 minutes. 5 
ml of 0.4 M sodium carbonate and 1 ml of diluted Folin-Ciocalteu reagent was added into the supernatant 
and incubated for 30 minutes. The absorbance was measured against a blank at 660 nm using a UV-spec-
trophotometer. One unit of the crude protease activity (U) was described as 1 μg of tyrosine liberated per 
minute per ml under standard assay conditions.

Optimization of unhairing

Factors affecting the unhairing of goatskins using the crude alkaline protease were studied and optimized to 
achieve maximum unhairing. The effect of temperature, pH and enzyme dilution was evaluated by dipping 
goatskin pieces in the crude enzyme and examining the extent of hair removal periodically. Three goatskins 
were cut into test pieces measuring 10x10 cm, which were washed and soaked in clean water for 2 hours 
in order to be rid of salt and dirt. The goatskin pieces were dipped in flasks with the 250 ml crude protease 
(0.45 U/ml) at 25°C and a pH range of pH 2 to 13 to assess the effect of pH on unhairing. A negative control 
experiment was also run in flasks under similar conditions but 250 ml of distilled water was used in place of 
the crude enzyme. The removed hair was weighed and expressed as a percentage against the total hair recov-
ered after the complete unhairing. The percentage was established as per the area without hair compared 
to the test piece’s total area. A complete hair removal was treated as 100% while no hair removal was 0%. 
The flasks, covered with cotton wool and aluminium foil, were shaken at intervals of 10 min. Gentle scrub-
bing using a blunt piece of wood was done to assess the ease of hair removal after every hour. 
Goatskin pieces were dipped in flasks with 250 ml of crude protease (0.45 U/ml) at pH 12, within a tempera-
ture margin of 25°C - 35°C in order to study the effect of temperature on the unhairing. Similarly, a negative 
control experiment with 250 ml of distilled water in place of the crude enzyme at pH 12 was run within the 
same temperature range. The flasks, covered with cotton wool and aluminium foil, were shaken at inter-
vals of 10 minutes and the ease of hair removal was determined after every hour. 
Other goatskin test pieces were dipped in flasks with the crude protease diluted in different proportions; 
100% (250 ml of crude enzyme – 0.45 U/ml), 80% (200 ml of crude enzyme – 0.45 U/ml, diluted with 50 ml 
of distilled water), 60% (150 ml of crude enzyme – 0.45 U/ml, diluted with 100 ml of distilled water), 40% 
(100 ml crude enzyme – 0.45 U/ml, diluted with 150 ml of distilled water), 20% (50 ml of crude enzyme – 
0.45 U/ml, diluted with 200 ml of distilled water) and 0% (250 ml of distilled water), all adjusted to pH 12 
to investigate the impact of enzyme dilution on unhairing. The flasks were observed at 27°C to allow the 
enzyme activity to take place. The ease of hair removal was determined at intervals of one hour.

Enzymatic leather processing

Once the unhairing conditions had been optimized, the unhairing of full goat skins was done with the crude 
alkaline protease at the optimized conditions at a local tannery. Experimental tannery drums were used 
to process a total of nine (9) goatskins in replicates of three using the enzyme extract. A positive control 
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experiment was also set up to unhair 9 goatskins using sodium sulphide, also in triplicates. All the skins were 
washed thoroughly and soaked for 16 hours in the presence of a 0.2% biocide, 0.1% wetting agent and 0.5% 
soda ash before the start of the unhairing process. The amount of all the chemicals used was calculated as 
a percentage of raw weight. A complete unhairing in the experimental group was achieved using the undi-
luted crude protease, at the optimized pH 12 and 27°C, in 12 hours. The pelt was gently scraped using a blunt 
blade to remove the hair, which was recovered, washed and dried. The pelts were then limed and subse-
quently fleshed for the recovery of sulphide-free flesh and fats. Similarly, the positive control group was 
conventionally unhaired using the lime-sulphide system and fleshed. The subsequent pre-tanning, tanning 
and post-tanning stages were carried out in similar standard treatments for the sulphide- unhaired and the 
enzyme-unhaired goatskins. Notably, the experimental group was not subjected to the bating process after 
deliming as the pelts were clean and well opened up, unlike the control group. The chrome-tanned leathers 
were processed to crust leather as per a standard procedure.

Organoleptic examination and physical tests of the processed leather

The enzyme-unhaired leathers were examined for visual and physical properties and compared to the 
lime–sulphide unhaired leathers. Various organoleptic properties that include appearance, softness, full-
ness, wrinkles, colour intensity and uniformity of the enzyme- unhaired and the sulphide-unhaired leathers 
were examined visually and through touch. They were then rated from 0 to 10 points for every examined 
parameter by three experienced leather technologists with higher points representing a superior quality. 
Leather samples for physical testing were acquired through a standard sampling procedure as stipulated by 
the ISO 2418:2002 standard [29]. Eighteen (18) pieces of the enzyme-unhaired goatskin leathers were cut by 
applying the standard dumbbell-shaped press knife to the grain surface. Nine (9) test pieces were obtained 
with the longer side parallel to the backline and nine (9) with the longer edge perpendicular to the backbone. 
These test samples were conditioned in a standard atmosphere and standard conditions; at the tempera-
ture of 23 ± 2°C and the humidity of 50 ± 5% for 48 hours as specified by the ISO 2419:2002 standard before 
testing [30]. The physical tests, such as tensile strength, tear strength and grain distension were tested as 
per the International Union for Physical testing for leather (IUP) methods. Tensile strength and elongation 
were tested in line with the ISO 3376:2002 standard [31]. The jaws of the tensile testing instrument were 
set apart and the samples secured in-between, aligning the jaw clamps with the midline. The machine was 
run and the jaws began to separate, stretching the test piece until it broke and the load recorded. The tear 
strength of the leather samples was measured by the Instron testing machine following the standard test 
method ISO3377-2:2002 [32]. A notched sample was clumped between the machine jaws. Upon the running 
of the machine, the jaws separated until the test piece tore and the load recorded. The strength of the 
grain was tested as per the standard ISO 3379:2015 [33]. A disk-shaped test piece was distended by pushing 
through the flesh side and observing the grain surface for incipient cracking and bursting and subsequently 
recorded as the distension at grain crack and distension at grain burst respectively.

Analysis of resultant liquor

The resultant wastewaters from the control (sulphide unhairing) and the experimental (enzymatic unhairing) 
groups were obtained after the unhairing stage and analyzed for biochemical oxygen demand (BOD), chemical 
oxygen demand (COD), total dissolved solids (TDS) and total suspended solids (TSS) following the standard 
technique [34].
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Data analysis

The data were analyzed by using the IBM SPSS Statistics 20 statistical tool. The T-test analysis was done to 
compare the means of the physical properties of the enzyme-unhaired goatskin leathers to the convention-
ally processed ones to assess the statistical difference of the results obtained (Significance level; α< 0.05). 
The differences were concluded to be significant when p<0.05.

RESULTS AND DISCUSSION 

Effect of the pH on enzymatic unhairing

The crude enzyme extracted after the 72h fermentation was assayed for its proteolytic activity. It was found 
that the activity of the crude protease from Bacillus cereus strain 1-p was 0.45 U/ml at the optimized variables. 
Hydrogen ion concentration (pH) is well known to affect the enzyme activity, because enzymes are proteins 
in nature, thus sensitive to changes in the pH [35]. The effect of the pH on the enzymatic unhairing of goat-
skins was studied at the pH range 2-13 at 25°C and the observations were summarized in Figure 1. The results 
showed that at a low pH (acidic), there was no hair removal throughout the observation period. Partial hair 
removal was first recorded at pH 12, 11, 9, 8 and pH 7 after 2, 4, 5, 5 and 6 hours respectively. Complete 
hair removal was only observed at pH 12 and 11 after 7 and 12 hours respectively. Negative control experi-
ments containing distilled water in place of the crude enzyme at a pH range of 2 to 12 showed no removal, 
indicating that the crude protease enzyme was solely responsible for the unhairing. The observed increase in 
unhairing efficiency with the increase in pH can be attributed to the increased effect on ionic and hydrogen 
bonds of the protease, which are important to the enzyme shape and its activity [36]. The observed results 
correspond to the properties of alkaline enzymes previously reported to show the highest unhairing rate 
at pH 8 to pH 12 [23-25,37-40].

Figure 1. Effect of pH on unhairing by using the enzyme from Bacillus cereus strain 1-p
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Effect of temperature on the enzymatic unhairing

Increase in temperature increases the reaction rate up to a specific temperature limit, beyond which the 
enzyme is denatured [41]. The effect of temperature on enzymatic unhairing of goatskins was investigated 
within the range of 25°C–35°C, at pH 12 using the undiluted crude protease, and the results displayed in 
Figure 2. The unhairing efficiency increased with an increase in the temperature. 100% hair removal was 
attained after 5 and 6 hours at 35°C and 33°C respectively. At 27°C and 25°C, complete unhairing was achieved 
after 7 hours. The negative control experiments showed no hair removal. These findings are significantly 
positive as hair removal was achieved in an acceptable temperature range for the raw hides and skins in a 
significantly short period. High temperatures are avoided in the early stages of leather processing because 
the shrinkage/denaturation temperature for raw skins is approximately 65°C around neutral pH while at 
high pH the skin’s shrinkage temperature reduces to 50°C or less; it is thus recommended that the temper-
ature for the soaking, unhairing and liming of skins must be limited to less than 30°C [42]. These observa-
tions showed a significant potential of the protease enzyme from the Bacillus cereus strain 1-p to be used 
for unhairing. These results are better than those reported of other microbial enzymatic unhairing tech-
niques that required significantly higher temperature ranges to achieve complete hair removal [14,17,23].

Figure 2. Effect of temperature on unhairing by using the enzyme from Bacillus cereus strain 1-p

Effect of the enzyme activity on the unhairing activity

Enzyme concentration affects the rate of enzyme activity by altering the number of enzyme molecules 
present. The effect of the enzyme dilution on unhairing of goatskins was determined at 27°C and pH 12 
using proportions of the crude enzyme diluted using distilled water and the results presented in Figure 3. 
The results show that the protease unhairing efficiency decreased with the increase in the crude enzyme 
dilution. Complete hair removal was first observed in the ratio 100:0 after 7 hours while the ratios 80:20 
and 60:40 took 9 hours and 10 hours respectively to achieve complete unhairing. This can be ascribed to 
the fact that the enzyme activity is highly dependent on its molecular concentration, which means that a 
high enzyme concentration translates to high enzyme activity [43]. Although various factors affecting the 
enzymatic unhairing have been investigated and are well established, the effect of the enzyme dilution has 
not been extensively studied and documented. Nonetheless, as an increase in dilution generally lowers 
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the concentration of enzyme molecules present in a specific volume, these findings correspond to those 
reported from the use of a protease extract from Bacillus crolab MTCC 5468 to unhair goatskins where 
the unhairing activity and efficiency increased with the increase in enzyme concentration, thus a complete 
unhairing was achieved faster [7].

Figure 3. Effect of the enzyme activity on the unhairing by using the enzyme from Bacillus cereus strain 1-p

Unhairing of full goatskins

The established optimum variables were used to unhair full goatskins by using the crude protease derived 
from Bacillus cereus strain 1-p at a local tannery. A positive control run was set up, where goatskins were 
unhaired using sodium sulphide. It was noted that the crude protease achieved complete unhairing in 12 
hours without the emission of any pungent smell. This was slightly longer than the period (7 hours) required 
to completely unhair test pieces at the laboratory scale. This can be attributed to the varying processing 
conditions, such as the temperature and the pH in the tannery processing drum. The novel protease from 
Bacillus cereus strain 1-p recorded a relatively shorter unhairing period compared to the ones reported 
from previous studies on alkaline proteases that reported unhairing periods of 16 hours up to 24 hours 
[13,14,22,44,45]. 
Visual examination of the pelts after the completion of the unhairing process showed that the pelt from 
the experimental group (enzyme-unhaired) was whiter and had a cleaner grain surface, void of hair follicles 
and epidermal structures, compared to the control group (sulphide-unhaired), which had darker patches, 
as displayed in Figure 4. This necessitated a further process step, bating of sulphide-unhaired pelts, the aim 
of which was to make the grain surface cleaner by removing scud and epidermal debris [46]. These results 
are in agreement with those reported by the previous research studies [8,13,47,48].
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A significant amount of intact hair was recovered from the enzymatic unhairing system while the sulphide 
system produced hair that was turned into a sludge-like mass (pulped form) with no distinctive structure. 
The hair was easily sieved out of the unhairing liquor, thus reducing the solid waste in the resultant effluent 
stream. Similar observations have been reported from previous enzymatic unhairing studies, whereby 
undamaged hair was recovered, which translated to the overall reduction of the pollution load in the waste-
water [13,48-50].
Both groups of unhaired pelts were further processed, tanned into wet-blue and post-tanned into crust 
leather as displayed in Figure 5. The physical properties of the experimental and control groups were tested 
and compared.

(b)(a)

 Figure 4. Comparison between the enzyme-unhaired pelt (a) and the sulphide-unhaired pelt (b)

a) Raw wet-salted goatskins b) Wet-blue goatskin leather c) Crust goatskin leather

Figure 5. Enzymatically processed goatskin from the raw stage (a), through wet-blue (b) to crust stage (c)
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Organoleptic and physical properties of the resultant leather

Physical properties of leather are vital quality parameters that determine the leather’s performance char-
acteristics in various applications, while organoleptic features indicate the general appeal of leather. The 
overall properties of the enzyme-processed leathers were either similar or better compared to the sulphide-
processed leathers. Organoleptic properties of leather make the product unique and valuable for various 
applications.

Organoleptic properties

The visual and hand assessment of the conventional and the enzyme-unhaired leathers by experienced 
leather technologists showed that the enzyme-unhaired leathers were comparable or marginally better in 
appearance, softness, fullness, colour intensity and uniformity as presented in Table 1. The enzyme-unhaired 
leathers generally showed superior properties in the assessed parameters with the following ratings: appear-
ance (9.5), softness (9.5), fullness (9.2) and colour intensity and uniformity (9.6) compared to the convention-
ally processed leathers with the ratings: appearance (8.9), softness (8.5), fullness (8.8) and colour intensity 
and uniformity (9.2). It was also notable that wrinkles were more prevalent in the enzyme-unhaired group 
(rated 9.8) compared to the sulphide-unhaired group (rated 9.0).

Table 1. Visual and hand assessment of the conventional and the enzyme-unhaired leathers

Appearance Softness Fullness Wrinkles Colour Intensity & 
Uniformity

Conv. Enzy. Conv. Enzy. Conv. Enzy. Conv. Enzy. Conv. Enzy.

Rating
(out of 10) 8.9 9.5 8.5 9.5 8.8 9.2 9.0 9.8 9.2 9.6

Where: Conv. – Conventional (sulphide) unhairing; Enzy. – Enzymatic unhairing

The enzyme-unhaired leather was of good quality characterized by uniform colour, smooth grain, appre-
ciable flexibility and a good appearance without any scud. This general observation has been attributed 
to the enhanced uptake of processing chemicals following the sufficient opening up of the fibre matrix as 
documented by previous research on enzymatic unhairing that reported similar results [7,12,13,18,47]. 
The general appearance of the conventionally and enzymatically treated goatskin leathers had a clear and 
clean grain without any foreign materials, but the enzyme-unhaired leathers were rated higher for the 
smooth feel, the gloss of the grain surface, a good handle, colour evenness and the general fullness of the 
leather structure. This can also be attributed to the enhanced absorption of tanning chemicals following the 
adequate splitting of collagen fibres. Similar observations on the appearance and fullness of the enzyme-
unhaired leather have previously been reported [7]. The ‘fibres splitting’ effect of the enzyme processing 
also influences the uptake of colour and dye material, thus giving the leather the observed deeper and 
more uniform colour [14].
The average ratings on the softness of the leathers suggest that the enzymatically processed leathers were 
much softer than the sulphide-processed leathers. Enzymatically processed leathers have previously been 
reported to be softer due to the enzyme�s action on non-structural proteins [12, 51]. This implies that 
enzyme application softens leather and makes it more pliable to the feel and touch. Leather softness can 
be associated with the fibre opening up [52]. Besides fully opening up the collagen structure, it is reported 
that enzymatic unhairing degrades the elastin network as opposed to the lime-sulphide system [48]. The 
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soft feel of the leather produced by the enzymatic unhairing process, therefore, can be explained by the 
removal of elastin, making it more flexible, supple and pliable. This is a desirable feature for the produc-
tion of soft and pliable products like upholstery, garment and glove leathers. Similar observations on the 
enzyme-unhaired leathers being softer compared to the sulphide-unhaired ones have been reported [53].
The enzyme-unhaired leathers were also characterized by many wrinkles compared to the sulphide-unhaired 
leathers. The degradation of the elastin can also explain the evident prevalence of wrinkles in the enzyme-
processed leathers. Elastin is an important protein that enables the skin to resume its shape after stretching 
or contracting. Hence, after its degradation, the leather surface does not regain its shape after distortion. 
Similar observations were made when an enzyme extract from Bacillus crolab MTCC 5468 was used to 
process goatskins [7].

Physical properties

Table 2 shows the physical properties of the resultant crust leathers. The general outlook of the sulphide-
unhaired and the enzyme-unhaired leather was comparable. The physical properties of both groups of leather 
met the minimum recommended standards [54]. The leathers obtained from enzymatic unhairing showed 
comparable tensile strength, distension at grain crack and distension at grain burst values to sulphide-
unhaired leathers with no significant difference between them (p values 0.81, 0.489 and 0.147 respectively). 
The elongation at break and tear strength values for the experimental leathers showed that there may be 
a significant difference when compared to the control samples (p values 0.026 and 0.037 respectively).

Table 2. Physical properties of the leathers from the enzymatically and the sulphide-unhaired goatskins

Tensile Strength
(N/mm2)

Elongation
(%)

Tear Strength
(N/mm)

Grain 
Distension

(mm)

Grain 
Distension

(mm)

↑ → Mean ↑ → Mean ↑ → Mean Crack Burst

Conventional 
unhairing 33.01 16.87 24.94 64.79 70.46 67.63 40.16 42.70 41.43 7.79 8.01

Enzymatic 
unhairing 33.73 20.13 26.93 65.68 86.89 76.29 42.37 44.81 43.59 7.89 8.23

Where: → - Perpendicular to the backline (transverse); ↑ - Parallel to the backline (longitudinal)

The comparability of the physical properties can be attributed to the fact that both unhairing techniques 
preserve the collagen content without causing damage. These results show that the crude protease does 
not compromise the strength of the collagen structure and therefore the technique is effective and prac-
tically feasible. Additionally, these results correspond to the properties of enzymatically unhaired leathers 
previously described, showing comparable or superior physical properties when compared to sulphide-
unhaired leathers [13,47,48]. Notably, the grain distension resistance of the enzyme-unhaired leathers was 
better than that of the sulphide-unhaired leathers as presented in Table 2. This can be attributed to the 
fact that the enzyme action is less harsh to the grain layer compared to the sulphide action and also the 
enhanced absorption of tannins, which has been previously observed and reported in the enzymatically 
processed leathers [7,18]. 
Further observations were made concerning the sampling direction of the samples obtained for physical 
testing. Similar trends were observed in both the enzyme-unhaired and the sulphide-unhaired leathers 
concerning the sampling direction for tensile strength, percentage elongation and tear strength, as shown 



www.textile-leather.com    49

NYAKUNDI JO, OMBUI JN, MULAA FJ, WANYONYI WC. Evaluation of the Bacillus cereus Strain… TLR 4 (1) 2021 38-54.

by the results in Table 2. The tests pieces sampled parallel to the backbone recorded higher tensile strength 
values (sulphide-unhaired: 33.01 N/mm2 and enzyme-unhaired: 33.73 N/mm2) than the perpendicularly-
sampled test pieces (sulphide-unhaired: 16.87 N/mm2 and enzyme-unhaired: 20.13 N/mm2). For the samples 
cut parallel to the backbone, most of their fibres are aligned in the same direction as the applied stress, 
hence having very little room to orientate towards the strain axis [55]. This means that the leather fibres 
themselves are strained, as there is minimal strain/stretch gained, as there is a minimal orientation of the 
fibres, explaining the higher tensile strength values. These conclusions are in agreement with those observed 
on the enzyme-unhaired leathers and the general behaviour of leathers during physical testing with regard 
to the sampling direction [13,56].
On the contrary, the samples cut perpendicularly to the backbone had higher percentage elongation and 
tear strength than those sampled parallel, as shown in the results in Table 2. The percentage elongation 
values (sulphide-unhaired: 64.79% and enzyme-unhaired: 65.68%) and the tear strength values (sulphide-
unhaired: 40.16 N/mm and enzyme-unhaired: 42.37 N/mm) of test pieces cut parallel to the backline were 
lower than the percentage elongation values (sulphide-unhaired: 70.46% and enzyme-unhaired: 86.89%) and 
tear strength values (sulphide-unhaired: 42.70 N/mm and enzyme-unhaired: 44.81 N/mm) of samples cut 
perpendicular to the backline. For the test pieces cut parallel to the backline, the fibre network is assumed 
to be naturally orientated to the same direction as the strain axis. In this case, the specific work of fracture 
was higher because the tear does not grow through the fibre diameters but instead propagates in a more 
straightforward rupturing process and hence the tear strength is low [56]. The percentage elongation is 
equally lower in these samples as the stress acts on the leather fibres themselves, which are strained with 
minimal stress. Similar findings concerning sampling direction when carrying out physical tests have been 
reported [48,55-57].

Pollution load in resultant wastewater

Wastewaters from both unhairing techniques were assessed and the results are presented in Table 3. The 
results are expressed in parts per million (ppm).

Table 3. Pollution load in unhairing wastewater streams

Pollution loads (ppm) Enzymatic unhairing group Sulphide unhairing group Percentage reduction of 
pollution (%)

BOD 940 4 200 78

COD 3 200 19 200 83

TDS 12 800 50 400 75

TSS 1 300 3 460 62

Total wastewater volume from 
the unhairing process 44 litres 88 litres 50

The presence of organic matter in wastewater contributes to increased BOD, COD, TDS and TSS [7]. It is clear 
from the results that the enzymatic unhairing, using the crude protease from Bacillus cereus strain 1-p, leads 
to a significant reduction in BOD by 78%, COD by 83%, TDS by 75% and TSS by 62%. It was equally notable 
that the volume of the wastewater produced after the unhairing process was reduced by 50% in the enzy-
matic technique. The hair shafts were removed completely intact and recovered from the unhairing liquor; 
hence the wastewater was free from hair and epidermal matter unlike in the conventional technique. The 
significant reduction in the pollution load can be attributed to the complete elimination of sodium sulphide 
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which solubilizes the hair and epidermis during the unhairing. These findings agree with previous findings 
from enzymatic unhairing systems that reported that enzymes drastically shrink the effluent pollution 
load and help in hair recovery [25]. Similar results have been reported from proteolytic alkaline unhairing 
systems indicating a significant reduction of the pollution loads from the unhairing wastewater streams 
[7,14]. However, the pollution load reduction from the unhairing process using this novel protease recorded 
a higher reduction compared to that reported by Senthilvelan et al. (2012), with a 62.8% and 79.0% reduc-
tion in BOD and COD respectively. Hence, the protease extract from Bacillus cereus strain 1-p is a viable and 
potential alternative for cleaner leather production.
The overall cost of leather production to the crust stage after the unhairing using the crude protease was 
approximately 0.55 USD per square foot compared to the cost of the conventional processing which was 
approximately 0.49 USD per square foot. The cost of the enzymatic unhairing technique was estimated from 
an inclusive calculation of the costs of all the laboratory reagents used for the enzyme extraction together 
with the processing chemicals at the tannery. Despite the slightly higher cost of production, the enzyme 
technique significantly reduced the pollution load, which would reduce the cost of effluent treatment and 
thus, give it an edge over the conventional technique.

CONCLUSION

This Bacillus cereus strain demonstrated the ability to secrete proteases that acted on the epidermal struc-
ture and hair, thus enabling their removal. The complete unhairing of the goatskins using the crude protease 
extract from Bacillus cereus strain 1-p took 12 hours at a relatively low temperature of 27°C. This unhairing 
technique yields leather that has comparable or even superior strength properties as well as organoleptic 
properties such as softness, fullness and colour uniformity when compared to the sulphide unhairing tech-
nique. The enzyme also facilitated the removal of the hair intact, which not only lowers the pollution load 
in the wastewater but also leads to recovery of the hair, which can be used for other industrial applications. 
The novel crude alkaline protease enzyme from Bacillus cereus strain 1-p can, therefore, be used to make 
leather processing cleaner and sustainable by eliminating the use of sodium sulphide without compromising 
on the quality of the resultant leather, and should, therefore, be explored for industrial applications and 
commercialization. 
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