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Abstract 

The ability of many insects to thrive on wood, foliage, and detritus has stimulated 

investigation on the extent to which the gut microbial flora of such species are able to digest 

lignocellulosic material in their diet. In this study, the capability of the intestinal flora from 

the gut of Schistocerca gregaria to degrade cellulose model compound was investigated. 

Two cellulolytic Bacillus strains with Index cellulolytic activities (ICA) values of 1.146 ± 

0.109 and 0.8442 ± 0.09203 were isolated and identified by 16S rDNA gene sequence 

homology and phylogeny tree building. The isolates were identified as Bacillus sp. MED and 

Bacillus sp. CACO and their respective 16S rDNA sequences deposited to GenBank under 

accession numbers JQ 837242.1 and JQ 837243.1. 
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Introduction 

Lignocellulose, the major structural component of plants represent a major source of 

renewable organic material [1]–[4]. Lignocellulose consists of Lignin, hemicellulose, and 

cellulose, and is considered an optimal feedstock for industrial production of biofuels and 

other value-added products [3]–[5]. Bioconversion of lignocellulose is initiated by microbial 

cellulases from fungi and bacteria which are capable of degrading lignocellulosic material 

[1], [2]. Lignocellulose is, however, a recalcitrant polymer as it is insoluble and is present as 

hydrogen-bonded crystalline fibres [6]–[8]. Therefore Current industrial bioconversion of 

lignocellulose requires the application of high temperature and acidic or basic conditions to 

breakdown lignin, decrease the crystallinity, increase pore volume and solubilize cellulose 

and hemicellulose, a phenomenon referred to as pre-treatment [8], [9]. This process is, 

however, both expensive and inefficient [4], [8]. Attempts to improve the feasibility of the 

bioconversion of lignocellulose have increased interest in prospecting for novel cellulolytic 

enzymes capable of increasing the depolymerization efficiencies [4], [5], [7], [10]. 

A diverse spectrum of microorganisms with the capacity to biodegrade cellulosic substrates, 

mainly fungi and bacteria, have previously been isolated and identified over the years and the 

list continues to grow rapidly [3], [6], [7], [10]. The ability of many insects to thrive on wood, 

foliage, and detritus has stimulated investigation on the extent to which the gut microbial 

flora of such species are able to digest lignocellulosic material in their diet [11], [12]. Though 

several reviews on cellulolytic activity in insects are available [11]–[13] the role of intestinal 

microbes in the recycling of organic matter in the gut system has often been disregarded [14]. 

The desert locust S. gregaria is a notorious polyphagous insect species capable of consuming 

several plant species in its surroundings [15], [16]. The desert locust has been reported to 

have a rich gut bacterial flora, however, little is known of the relationship between the 

microbes and their host [16]–[19]. The gut microbiota of the desert locusts is, however, 

                  



thought to help protect the host from invasion by pathogenic microorganisms, a process 

known as colonization resistance (CR) [17], [18]. Previous reports also show that key 

components of the locust aggregation pheromone are produced by the gut bacteria [16]–[18]. 

Although low levels of cellulolytic activity have been detected in the gut of the desert locust 

S.gregaria and other related species [5], [12], [20], [21] there is limited information regarding 

cellulolytic bacteria present [19], [21]. In this study, the capability of the intestinal flora from 

the gut of the desert locust S. gregaria to degrade cellulosic compounds was investigated. To 

do so we used a combination of enrichment culture and 16S rRNA gene sequencing to isolate 

and identify cellulolytic bacteria from the gut of the desert locust S. gregaria using 

carboxymethyl cellulose as a model substrate. To our knowledge, this is the first case for 

isolation of such bacteria from desert locust and their potential impact in the biotechnological 

transformation of Lignocellulosic biomass. 

Material and Methods 

Isolation of the Bacteria 

An adult desert locust, S. gregaria obtained from the School of Biological Sciences at the 

University of Nairobi, Kenya was surface sterilised in 70% ethanol, then rinsed with sterile 

distilled water and air-dried for 5 minutes at room temperature. The locust was then dissected 

with a pair of a sterile scalpel and the entire gut removed and suspended in 10 ml of 0.85% 

NaCl. An aliquot of 0.5 ml of the gut suspension was mixed with 4.5 ml of sterile Medium 1, 

a basal medium described by Chakraborty et al.[22] containing 0.2gL
-1

 yeast extract and 5gL
-

1
carboxymethyl cellulose (CMC) as a sole carbon source and the pH set at 6.9. The culture 

was incubated at 37⁰ C for 3 days in an airtight falcon tube (IWAKI, Japan). A second 

media, Medium 2, a modified DSMZ medium 65 containing 5gL
-1

Carboxymethyl cellulose 

(CMC), 0.1gL
-1

 Malt extract, 0.04gL
-1

 Yeast extract and pH set at 7.2  was also used for 

isolation Wenzel et al. [23]. The culture was then incubated for 4 weeks at 37ºC in an airtight 

                  



falcon tube (IWAKI, Japan). After respective incubation periods10μl of the resulting cultures 

were spread on nutrient agar plates and incubated for 24hrs at 37ºC. Pure colonies were 

obtained by several (five-six) subsequent plating on nutrient agar plates (OXOID, UK) 

(Supplementary Information Fig S1). The isolated bacterial strains were finally cultivated on 

nutrient broth (OXOID, UK). All steps were performed under aseptic conditions. 

Screening for cellulose-degrading capacity 

To test for cellulolytic activity of the bacterial isolates, a solid medium described by Wenzel 

et al. [23] designated Medium 3 [5gL
-1

 CMC, 4gL
-1

 Yeast extract, 10gL
-1

 Malt extract, and 

12gL
-1

 Agar, pH 7.2 (modified, DSMZ medium 65 without CaCO3 and glucose)] was used. 

The isolates were spread on Medium 3 plates and incubated for 5 days at 37ºC. 

Carboxymethyl cellulose degradation was tested by flooding the plates with 1mg/ml congo 

red dye (Sigma, USA) for 15 minutes followed by destaining with 1M NaCl. Bacterial strains 

that showed enzymatic activity towards CMC were used in subsequent studies. 

Morphological and molecular identification of the bacterial isolates 

The isolates were subcultured on Nutrient agar plates for 24 hours before a colony of each 

isolate was transferred on to sterile glass slides. Gram stain [24] and KOH test [25] were 

performed. KOH test uses 3% potassium hydroxide to determine gram reaction [25]. For 

molecular identification 16s rRNA gene was used. For this purpose, the procedure described 

by Wilson [26] was used to harvest total genomic DNA from the bacterial cells. Polymerase 

chain reaction (PCR) was performed in a TProfessional thermocycler (Biometra, Germany). 

The 16S rRNA gene primers previously described by Baumgarte et al. [27] were used: 

16sF27, forward 5’…AGA GTT TGA TC(AC) TGG CTC AG…3’ and 16sR 1492, reverse 

5’…TAC GG(CT) TAC CTT GTT ACG ACT T…3’. The PCR reaction was performed in a 

total volume of 50μl containing 2mM MgCl2, 200µM dNTPs, 1µM of each primer, 2.5U Taq 

polymerase and 100ng of the DNA template (Supplementary information TableS2). The PCR 

                  



was carried out according to Baumgarte, et al. [27] with some modifications (Supplementary 

information TableS3). The PCR products were then gel purified using Illustra GFX PCR 

DNA and Gel purification kit (GE Healthcare, UK), analysed on a 1% agarose gel to 

determine their sizes and quality before they were sent to ILRI (International Livestock 

Research Institute, Kenya) for sequencing. The deduced sequences were used for BLAST 

searches at NCBI using the default settings of BLASTn algorithm with the Database set at 

16S ribosomal RNA sequences (Bacteria and Archaea) and optimized for highly similar 

sequences [28]. Fifteen top hits with identities above 99% and 100% coverage retrieved from 

the database, were aligned in MUSCLE [29] and a phylogenetic tree constructed based on the 

nucleotide sequences with the Bayesian phylogenetic method in MrBayes [30]. The tree was 

then visualised using fig tree software obtained at http://tree.bio.ed.ac.uk/. 

Results and Discussion 

For many years research efforts on cellulolytic microbial symbionts have mainly been 

focused on beetles and termites due to their high level of destruction to plant and wooden 

material [21], [23], [31]. In contrast, research into the mechanisms underlying the degradation 

of plant material, an important food source, in locust has widely been neglected [21].  This 

study was therefore motivated by the limited information available regarding cellulolytic 

symbiotic microbes in the gut of the desert locust S. gregaria and their potential applications 

in industrial biotransformation of cellulosic material. The organism was considered an 

appropriate target for screening cellulolytic bacteria because of its ability to utilise 

lignocellulose plant material resulting in massive destruction of cultivated fields and 

vegetation as previously reported [16]. The desert locusts used in the study were laboratory-

bred adults whose diet comprised of freshly cut grass. The alimentary canal of the desert 

locust Schistocerca is anatomically similar to that of Locuster migratoria for which detailed 

descriptions are available and the pH of the gut increases posteriorly from pH 5.7 at the 

                  



mouth to pH 7.1 in the hindgut [5], [20]. The approach used by Wenzel et al. [23] to isolate 

bacteria from termites was extended to the desert locust S. gregaria where two distinctive 

media (Medium 1 and Medium2) of different pH (Supplementary information TableS1) were 

used to increase the chances of isolating bacteria along the entire gut. From the study, two 

bacterial isolates tagged CB1 and CB2 were obtained (Table 1) each from the two distinctive 

media used respectively. The isolates were both able to grow on CMC media at 37ºC, and 

from the cellulolytic test result (Fig. 1), clear zones around the bacterial colonies on CMC 

plates after staining with Congo red dye indicated cellulolytic activity. Index cellulase 

activity (ICA) was then calculated as ICA = [(Diameter clear zone – Diameter bacterial 

colony)/Diameter bacterial colony] according to Mangunwardoyo et al. [32] 

(Supplementary information TableS4). ICA values of 1.146 ± 0.109 and 0.8442 ± 0.09203 

were obtained for CB1 and CB2 respectively (Table 1) indicating the ability to degrade 

cellulose. The ICA values (ICA) for CB1 was slightly higher that of CB 2, however, the 

difference was not statistically significant (p-value >0.05). 

A B

 

FIGURE 1: Photographs of agar plates containing CMC spotted with bacterial isolates. Clear 

zones around the isolates after flooding the plates with 1mg/ml Congo red are indications of 

cellulolytic activity. (A) CB 1; Bacillus sp. MED from Medium 1 (B) CB 2; Bacillus sp. 

CACO from Medium 2. 

                  



Characterisation of the isolates relied on morphological characteristics and molecular tools. 

The morphological features of the isolates were determined by gram stain [24] and KOH tests 

[25]. KOH test is normally used as a confirmatory test for gram stain. It uses 3% potassium 

hydroxide to determine the gram reaction. Gram-negative bacteria become viscous and string 

out, while gram-positive bacteria are not affected [25]. The two tests confirmed the two 

isolates were gram-positive rods (Table 1). 

Table 1: The morphology characteristics of isolated bacteria and cellulolytic activities 

  Isolates 

Tests CB 1 (Bacillus sp. MED) CB 2 (Bacillus sp. CACO) 

Gram stain +ve +ve 

KOH test No effect No effect 

Catalase +ve +ve 

Colony 

appearance on 

Nutrient agar 

Creamy, Circular, raised Creamy, irregular, flat 

Shape rod rod 

ICA number 1.1463 ±0.109 0.8442 ±0.09203 

 

The isolates were further identified by 16S rRNA gene sequence homology at NCBI using 

the BLAST search algorithm. Blast search of the 16S partial sequences revealed that both 

isolates (CB1 and CB2) were closely related to Bacillus safensis with sequence identities 

>99% with Bacillus safensis strain NBRC 100820 (accession no. NR113945) and Bacillus 

safensis FO-36b (accession no. NR041794). The 16S rRNA gene sequences for the two 

isolates were deposited to GenBank at NCBI where the isolates were tagged as Bacillus sp. 

MED 1and Bacillus sp. CACO with accession numbers JQ 837242.1 and JQ 837243.1 for 

CB1 and CB2 respectively. A Phylogenetic tree (Fig 2) based on the homologous sequences 

obtained from blast searches [28]  was constructed, where the isolates clustered with 

                  



members of B. safensis clade as expected with a posterior probability value of 94% (< 97%) 

signifying that these isolates are likely to be new members of this group. From the tree 

topology, the two isolates also appeared to be closely related. 

Hydrolytic activity towards cellulose powder has previously been detected in the gut fluids of 

a few species of locusts [20], [21] and related grasshoppers (Willis, et al., 2010). There is 

however limited information correlating the observed hydrolytic activity of cellulose 

microbial degradation in the gut of desert locusts [19]–[21]. In their study, Evans & Payne 

[20] eliminated bacterial degradation of cellulose by addition of toluene to their reaction 

mixtures, where they noted, addition of toluene to the reaction mixture containing fresh gut 

content caused a 40% decrease in cellulose hydrolysis. They, therefore, suggested that 

cellulolytic bacteria played a part in cellulose digestion in addition to endogenous cellulase 

enzymes, however, they were unsuccessful in the detection of protozoa, which could have 

been a source of cellulases on examination of the gut content under a microscope [20]. More 

recently Su et al. reported cellulolytic activity and the community structure of symbiotic 

bacteria in the gut of locusts from five different families including Acrididae, Arcrypteridae, 

Oedipodidae, Catantopidae, and pyrgomorphidae [21]. Their study showed differences in the 

intestinal bacterial community structure of different locust species and that majority of these 

bacterial symbionts had cellulose degradation capacity [21].  

Studies on the microbial flora of S. gregaria indicate that the gut contains a relatively simple 

but abundant microbiota which originates from the insect diet [16]–[19]. The organisms 

identified to date include Escherichia coli, Enterobacterliquefaciens, Klebsiellapneumoniae, 

Enterobacter cloacae and a number of gram-positive streptococci [18]. The gut microbes of 

the desert locust are thought to help protect the host from invasion by pathogenic 

microorganisms, a phenomenon is known as colonization resistance. It has also been reported 

that bacterially derived phenolics (Guaiacol& Phenol) provide key components of the locust 

                  



aggregation pheromone [16]–[18] and the digestion and processing of plant material in the 

gut appears to be a pre-requisite for production of guaiacol by bacteria. The most obvious 

precursor has been reported to be the plant-derived vanillic acid from lignin[17]. The failure 

to isolate cellulolytic bacteria from the gut of desert locust, S. gregaria to date is therefore not 

compelling evidence against the involvement of cellulolytic bacteria in the digestion of 

dietary cellulose. This study, therefore, provides the likelihood of bacterial involvement in 

the digestion of cellulosic material and associated plant polymers in S. gregaria as previously 

proposed by Su et al. for other locust species [21]. This suggests that locust gut flora offers a 

potential source of cellulolytic bacteria, that could be useful in the biotransformation of 

cellulosic material to biofuels and other chemicals using inexpensive substrates.  

 

FIGURE 2: Phylogenetic tree based on 16s rDNA gene sequences. The tree was constructed 

in MrBayes, a program for the Bayesian inference of phylogeny that is based on the Markov 

                  



Chain Monte Carlo (MCMC) method. Numbers at the nodes indicate the percentage of 

posterior probabilities indicating topological robustness of the Phylogenetic tree. 

Pseudomonas putida strain OS-5 was used as an outgroup to root the tree. 

Conclusion 

Results from this study suggest that the desert locust (S. gregaria) gut offers a potential 

source of microbial cellulases, which may be useful in the biotransformation of cellulosic 

material to biofuels and other chemicals using inexpensive substrates.  
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