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Abstract

Background

The rapid spread of HBV has resulted in the emergence of new variants. These viral geno-

types and variants, in addition to carcinogenic risk, can be key predictors of therapy

response and outcomes. As a result, a better knowledge of these emerging HBV traits will

aid in the development of a treatment for HBV infection. However, many Sub-Saharan Afri-

can nations, including Kenya, have insufficient molecular data on HBV strains circulating

locally. This study conducted a population-genetics analysis to evaluate the genetic diversity

of HBV among Kenyan blood donors. In addition, within the same cohort, the incidence and

features of immune-associated escape mutations and stop-codons in Hepatitis B surface

antigen (HBsAg) were determined.

Methods

In September 2015 to October 2016, 194 serum samples were obtained from HBsAg-posi-

tive blood donors residing in eleven different Kenyan counties: Kisumu, Machakos, Uasin

Gishu, Nairobi, Nakuru, Embu, Garissa, Kisii, Mombasa, Nyeri, and Turkana. For the HBV

surface (S) gene, HBV DNA was isolated, amplified, and sequenced. The sequences

obtained were utilized to investigate the genetic and haplotype diversity within the S genes.

Results

Among the blood donors, 74.74% were male, and the overall mean age was 25.36 years.

HBV genotype A1 (88.14%) was the most common, followed by genotype D (10.82%),

genotype C (0.52%), and HBV genotype E (0.52%). The phylogenetic analysis revealed

twelve major clades, with cluster III comprising solely of 68 blood donor isolates (68/194-

35.05%). A high haplotype diversity (Hd = 0.94) and low nucleotide diversity (π = 0.02) were
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observed. Kisumu county had high number of haplotypes (22), but low haplotype (gene)

diversity (Hd = 0.90). Generally, a total of 90 haplotypes with some consisting of more than

one sequence were observed. The gene exhibited negative values for Tajima’s D (-2.04,

p<0.05) and Fu’s Fs (-88.84). Several mutations were found in 139 isolates, either within or

outside the Major Hydrophilic Area (MHR). There were 29 mutations found, with 37.9% of

them situated inside the "a" determinant. The most common mutations in this research were

T143M and K122R. Escape mutations linked to diagnostic failure, vaccination and immuno-

globulin treatment evasion were also discovered. Also, one stop-codon, W163STP, inside

the MHR, was found in one sample from genotype A.

Conclusion

In Kenya, HBV/A1 is still the most common genotype. Despite limited genetic and nucleotide

diversity, haplotype network analysis revealed haplotype variance among HBV genotypes

from Kenyan blood donors. The virological properties of immune escape, which may be the

source of viral replication endurance, were discovered in the viral strains studied and

included immune-escape mutations and stop-codon. The discovery of HBsAg mutations in

MHR in all isolates highlighted the need of monitoring MHR mutations in Kenya.

Introduction

The Hepatitis B virus is the causal agent of HBV infection, which is spread by body fluid con-

tact and causes both acute and chronic hepatitis infections. Chronic HBV infection can prog-

ress to hepatocellular carcinoma (HCC) and liver cirrhosis (LC), both of which are fatal [1, 2].

HBV has infected one-third of the world population, resulting in an estimated 296 million

chronic infections and over 800,000 deaths in 2019, the majority of which were caused by LC

and HCC [3]. Despite the availability of a vaccination for prevention, 1.5 million new infec-

tions are recorded each year [3].

Unlike other DNA viruses, HBV replication involves a critical reverse transcription step

[4]. This stage requires ribonucleic acid (RNA)-dependent DNA polymerase, which lacks

proofreading function, resulting in error-prone viral replication. Error-prone replication is a

crucial molecular mechanism in the development of genotypes and sub-genotypes [5]. HBV is

classified into ten genotypes, HBV-A to HBV-J, which differ by 7.5–15% at the nucleotide level

of whole genomes [6]. Around 40 sub-genotypes with 4–7.5% divergence of the total genomic

sequence are identified [7]. The outcome of HBV infections, responsiveness to therapy, and

risk of HCC development have all been connected to viral heterogeneity [8].

For viruses to adapt to changing settings, genetic diversity is important [9]. Thus, DNA/

RNA sequence analysis can be useful for understanding what factors shape genetic diversity

patterns in natural populations [10, 11], which is important for monitoring the emergence of

new variants [10, 12]. Since HBV reverse transcriptase lacks a proof-reading mechanism, a sig-

nificant rate of mutation occurs spontaneously during viral genome replication [13, 14]. These

alterations may have pathobiological consequences during immunosuppression-driven HBV

reactivation, boosting viral replication re-uptake during the first weakening of immune

responses [15–18].

There is little understanding of HBV types and their genetic diversity in Kenyan blood

donors, with few publicly available surface gene sequences from Kenyan blood donors on the
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NCBI nucleotide database. Furthermore, the study investigated nucleotide heterogeneity and

amino acid variations in the HBV surface genes between our samples (Kenyan sequences) and

publicly available international sequences. Further it also determined the prevalence and char-

acteristics of immune-associated escape mutations and stop codons in HBsAg.

Materials and methods

Study design and sampling

All donor blood units in this study were tested for HBV using the Murex HBsAg kit v.3

(Abbott Diagnostics, Louvain-la-Neuve, Belgium), a qualitative test intended for the detection

of HBsAg, according to the National Blood Transfusion Service (NBTS) testing algorithm [19,

20]. A total of 194 de-identified serum samples, were obtained from NBTS headquarters in

Nairobi after being screened positive by the national algorithm. Serology testing results, as well

as demographic information, were recorded. All donors had verbally consented to their blood

being used for research reasons. At the NBTS centers in the counties, staff collecting blood

samples, sought verbal consent from donors, to use their sample for research purposes, in case

they tested positive for HBV. Also, Individuals who tested positive for HBsAg were notified

and referred for counselling and treatment. The 194 samples had been taken between Septem-

ber 2015 and October 2016 from eleven distinct counties: Eldoret (Uasin Gishu), Embu, Gar-

issa, Kisii, Kisumu, Lodwar (Turkana), Machakos, Mombasa, Nairobi, Nakuru, and Nyeri.

Serum samples were maintained at -80˚C before being shipped to the National Microbiology

Laboratory, Winnipeg, Canada, for further testing and characterization of HBV isolates.

Molecular work was conducted between November 2016 and April 2017.

Ethics approval

Ethical approval for the research was obtained from Kenya Medical Research Institute’s ethical

review committee, approval number SERU 2209. Authors did not have access to information

that could identify individual participants during or after data collection.

DNA extraction, amplification and sequencing

Hepatitis B Virus DNA from HBsAg positive samples was extracted using the QIAamp1

DNA blood mini kit (Qiagen Inc., Ontario, Canada). The extract, from 200μl serum, was

eluted in 60μl nuclease free water (Ambion1, Thermo Fisher Scientific, Ontario, Canada).

The partial HBV S gene was amplified as previously described by Stuyver et al., [21]. Briefly,

5μl DNA extract was amplified using primers (1st stage forward and reverse primers,

50-GGAGTCGTGCAGG TTTTGC-30, 50-TGCTGCTATGCCTCATCTTC-30; nested stage for-

ward and reverse primers, 50-CARAGACAAAAGAAAATTGG-30, 50-CAAGGTATGTTGCC
CGTTTGTCC-30); primers were prepared by IDT Canada, Ontario, Canada) specific for the

HBsAg gene coding region (approx. nt 414–822, numbering based on GenBank access

AY128092). Amplification proceeded using AmpliTaq Gold DNA Polymerase (Thermo Fisher

Scientific) following the manufacturer’s suggested protocol and an annealing temperature of

45˚C for each stage. Nested PCR products (340 bp) were gel purified and cycle sequenced

using an Applied Biosystems 3730 XL DNA Analyzer (Thermo Fisher Scientific).

Sequence alignment and phylogenetic analysis

Geneious Prime version 2022.2.2 software was used in De novo assembly of all the 194

sequences, and ClustalW algorithm was used for multiple sequence alignment. The sequence

alignment was trimmed to 299 bp (approx. nt 455–753) for downstream analysis. The DNA
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Sequence Polymorphism (DnaSP) version 6.12.03 was used for genetic computations [22]. The

software aided in determination of natural selection, genetic drift, mutation, recombination,

and gene flow levels. Nucleotide diversity (π), haplotype diversity (Hd), pairwise population

differences, Tajima’s D [23], and Fu and Li’s D*/F* [24] were computed to assess the null

hypothesis that all mutations are selectively neutral [25]. The sequences were further mapped

to accession number GQ183486 that was found to have most proximity to the Kenyan HBV

sequences using ClustalW algorithm. CodonCode Aligner software (version 10.0.2) was used

in revealing mutated amino acid codons. Further, amino-acid sequences were compared with

known wild type (ALG02604.1), to analyze presence of mutations within the MHR. The muta-

tion pattern was assessed based on published reports using GENETYX1 ver.9 [26]. The

median-joining haplotype network was constructed by PopArt version 1.7. The 194 isolate

sequences from this study were deposited in NCBI (GenBank) and assigned the accession

numbers ON832834–833075. Sequences were aligned with HBV genotype reference sequences

(S1 Table) and trimmed using MAFFT v7 [27] and BioEdit v7.2.5 [28], respectively. Maximum

likelihood analysis of the partial HBsAg-coding region (nested amplicon trimmed to 299 bp)

was performed using IQ-Tree software [29] by the SYM+γ+I model determined as the most

appropriate substitution model for the alignment. Phylogenetic branch support was computed

by the approximate likelihood-ratio test based on a Shimodaira-Hasegawa-like procedure [30].

HBV genotype designation was based on clustering with reference sequences supported by

branch support� 75%. The tree was built with the neighbor-joining method (1000 replicate

bootstrapping), and the branches were converted into a cladogram. The sequences were classi-

fied into twelve clades based on the results. Genotype A blood donor haplotypes, red circle;

genotype C blood donor haplotype, green circle; genotype D blood donor haplotypes, blue cir-

cles; genotype E blood donor haplotype, yellow circle. Shared haplotype sequences are desig-

nated with a triangle in the color of their genotype.

Results

Characteristics of the study population

The demographic data, HBsAg-positive findings and collection dates were provided by NBTS

(Table 1). The study comprised 194 blood samples from donors with a mean age of 25.36

years. Most samples were from males (145/194, 74.7%) as compared to females (49/194,

25.3%). The HBV case group were from 11 counties of Kenya, with 18.6% (36/194) from

Kisumu county; 17.0% (33/194) collected from Machakos county; 16.5% (32/194) Eldoret

(Uasin Gishu county); 13.9% (27/194) Nairobi; 7.7% (15/194) Nakuru; 6.7% (13/194) Embu;

5.7% (11/194) Garissa; 5.7% (11/194) Kisii; 5.2% (11/194) Mombasa; 1.5% (3/194) Nyeri; and

1.5% (3/194) Lodwar (Turkana county).

Table 1. Demographic data of blood donors.

Parameter Sample size

Name Level

Gender Males 74.7% (145/194)

Females 25.3% (49/194)

Age group 16–25 126

26–35 41

36–35 17

46–78 10

Mean age 25.36 (26–35)

https://doi.org/10.1371/journal.pone.0291378.t001
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Genetic diversity of the partial HBV large surface protein gene in Kenya

A total 91 segregating sites were observed in the S gene of 194 samples sequenced from Kenya.

Kisumu County had 23.2% (45/194) of the 91 mutated sites, followed by Machakos at 19.1%

(37/194), Eldoret at 16.5% (32/194), Nakuru at 15.5% (30/194), Embu at 14.9% (29/194), and

Nairobi at 13.9% (27/194), with the rest falling below 13% (Table 2). The nucleotide diversity

(π) per study site ranged from 0.004 to 0.04, with the highest being observed in S gene

sequences of HBV isolates from Nyeri, which could have been influenced by the small number

of sequences analyzed. The HBV S gene displayed high haplotype diversity (Hd) in Kenya

(0.9), with variation ranging from 0.7 to 1 across the eleven study sites resulting in a total of 89

haplotypes (Table 2). Machakos had the highest Hd value (0.95), while Nakuru had the lowest

(0.70). HBV isolates from Kisumu had the highest number of haplotypes (22), followed by

Eldoret (20), Machakos (20), and Nairobi (14). The remaining Counties had fewer than ten

haplotypes recorded (Table 2).

Population structure and gene flow of HBV in Kenya counties

Most of the genetic variation in the S gene of HBV from Kenya (88.1%) was observed within

populations, with only 11.9% variation observed among virus populations from different

Counties (Table 3).

Despite the number of haplotypes observed varying by counties of patient origin, various

mutated loci and haplotypes were shared across Counties. Samples showing identical

sequences to those from other counties were coded as shared haplotypes (SHap). However,

those which shared sequences within the same county, were referred to as haplotypes (Hap).

Similarly, samples with distinct or unique sequences were also regarded as Hap. Shared haplo-

type SHap_8A of genotype A origin was found in each geolocation, accounting for 17% (33/

Table 2. Genetic diversity indices of surface protein gene from HBV isolate circulating in human population in 11 counties of Kenya.

Study site n Total mutations P H Hd Tajima’s D Fu’s Fs Fu and Li’s D* Fu and Li’s F*
Nakuru 15 30 0.02 8 0.70 -0.81 1.17 -0.40 -0.54

Nairobi 27 27 0.02 14 0.93 -0.88 -2.82 -0.05 -0.35

Embu 13 29 0.02 7 0.73 -2.10** 0.19 -2.65 -2.62

Eldoret 32 35 0.03 20 0.94 -0.39 -5.08 -0.40 -0.43

Machakos 33 37 0.01 20 0.95 -1.88 -10.38 -2.34 -2.40

Nyeri 3 20 0.04 3 - - - - -

Kisii 11 21 0.02 7 0.93 -1.34 -0.32 -1.65 -1.83

Garissa 11 22 0.03 9 0.96 0.89 -1.14 0.97 0.96

Mombasa 10 14 0.01 8 0.96 -1.60 -3.31 -1.79 -1.78

Lodwar 3 2 0.004 3 - - - - -

Kisumu 36 45 0.018 22 0.90 -1.77** -9.163** -2.08 -2.24

Kenya 194 91 0.02 90 0.94 -2.04* -88.84*** -6.32** -5.17**

n: sample proportion, π: Nucleotide diversity, h: Number of haplotypes, Hd: Haplotype diversity

https://doi.org/10.1371/journal.pone.0291378.t002

Table 3. Molecular variance of the S gene in HBV circulating in Kenya.

Source of Variation d.f Sum of squares Variance components Percentage of variation (%)

Among populations 11 96.268 0.39763 Va 11.9

Within populations 183 535.898 2.94450 Vb 88.1

Total 194 632.166 3.34213 100

https://doi.org/10.1371/journal.pone.0291378.t003
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194) of the sequences examined (Fig 1). Haplotype SHap_1A was a shared common ancestor,

while haplotype SHap_8A was the most recent ancestor among Kenyan isolates (Fig 1). Other

shared haplotypes among genotype A were SHap_1A at 16.5% (32/194), SHap_14A (3.6%, 7/

194), SHap_12A (2.6%, 5/194), SHap_32A (2.6%, 5/194), SHap_33A (1.5%, 3/194), SHap_36A

(1.5%, 3/194), SHap_22A (1%, 2/194), SHap_28A (1%, 2/194), and SHap_66A (1%, 2/194).

Among genotype D, shared haplotypes included SHap_15D at 2.6% (5/194), SHap_16D (1%,

2/194), and SHap_62D (1%, 2/194). Shared genotype D haplotypes were only observed in

Eldoret, Lodwar, Garissa, Nairobi, Kisumu, and Kisii (Fig 1). SHap_12A and Hap_74A served

as a common ancestry link to genotype A, C, and D across Kenya’s eleven counties.

Kisumu and Machakos counties had the most shared mutated loci (29) followed by Eldoret

and Kisumu (27) and Eldoret and Machakos (24) (Table 4). The computed low Fst value was

observed between all study sites, with counties with higher Nm values recording the lowest Fst

values (Table 4). Low Fst values indicate a lack of population structure and a lack of geographi-

cal or genetic barriers to gene flow. This increases heterogeneity within population but

increases homogeneity (reduced diversity) among population. Nairobi and Kisii had the high-

est level of gene flow (Nm = 36.9), followed by Eldoret-Garissa (13.0), Nairobi-Eldoret (12.3),

Eldoret-Kisii (12.0) and Nakuru-Nairobi (11.1) (Table 4).

Phylogenetic analysis was performed on 87 selected blood donors, representing a total of

190 samples. Among them, 22 were representatives of Shap (RSHap) or Hap (RHap), with 65

distinct samples (Hap). Globally, the oldest shared common ancestry with Kenyan isolates was

isolate with accession number A1_MF169808_from Ethiopia (Fig 2). Eight haplotypes: Hap

Fig 1. Local haplotype network of HBV based on S gene sequences from 11 counties in Kenya. The red circle represents sequences from Nakuru, Nairobi

(green), Embu (violet), Eldoret (yellow), Machakos (purple), Nyeri (brown), Kisii (blue), Garissa (pink), Mombasa (orange), Lodwar (sky blue), and Kisumu

(jungle green). A. haplotypes from Central (Nairobi and Nyeri), B. Eastern (Machakos and Embu), C. Northern and Coastal region (Garissa and Mombasa), D.

Rift valley (Eldoret, Lodwar and Nakuru), and E. Western region (Kisumu and Kisii). The number of mutations resulting in a specific haplotype is represented

by the hatch marks, and the size of the circle corresponds to the number of sequences or samples in a specific haplotype.

https://doi.org/10.1371/journal.pone.0291378.g001
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Table 4. Hepatitis B virus population structure and gene flow in Kenya.

Population No. of shared polymorphic sites Fst GammaSt GammaSt Nm

Nakuru Nairobi 18 -0.01 0.02 11.1

Nakuru Embu 2 0.07 0.07 3.4

Nakuru Eldoret 20 0.02 0.03 8.8

Nakuru Machakos 18 0.06 0.05 4.3

Nakuru Nyeri 17 -0.14 0.04 5.8

Nakuru Kisii 18 -0.02 0.02 10

Nakuru Garissa 18 -0.02 0.03 8.6

Nakuru Mombasa 4 0.05 0.06 4.3

Nakuru Lodwar 0 0.72 0.34 0.5

Nakuru Kisumu 19 0.12 0.08 2.9

Nairobi Embu 1 0.08 0.06 3.8

Nairobi Eldoret 23 0.01 0.02 12.3

Nairobi Machakos 22 0.01 0.02 10.0

Nairobi Nyeri 19 -0.08 0.05 4.5

Nairobi Kisii 19 -0.05 0.01 36.9

Nairobi Garissa 21 0.02 0.04 5.8

Nairobi Mombasa 5 0.02 0.03 8.5

Nairobi Lodwar 0 0.80 0.34 0.5

Nairobi Kisumu 25 0.08 0.05 4.4

Embu Eldoret 3 0.17 0.09 2.5

Embu Machakos 4 0.12 0.08 3.0

Embu Nyeri 0 0.06 0.15 1.5

Embu Kisii 2 0.05 0.07 3.5

Embu Garissa 0 0.16 0.14 1.6

Embu Mombasa 2 0.02 0.05 4.5

Embu Lodwar 1 0.84 0.58 0.2

Embu Kisumu 1 0.26 0.13 1.6

Eldoret Machakos 24 0.05 0.04 5.9

Eldoret Nyeri 19 -0.09 0.03 8.5

Eldoret Kisii 19 0.003 0.02 12.0

Eldoret Garissa 21 -0.02 0.02 13.0

Eldoret Mombasa 7 0.11 0.05 4.7

Eldoret Lodwar 2 0.70 0.20 1.0

Eldoret Kisumu 27 0.03 0.03 8.0

Machakos Nyeri 19 0.03 0.08 2.9

Machakos Kisii 20 -0.01 0.02 10.3

Machakos Garissa 21 0.09 0.08 3.0

Machakos Mombasa 10 0.01 0.03 9.6

Machakos Lodwar 0 0.84 0.38 0.4

Machakos Kisumu 29 0.05 0.04 6.0

Nyeri Kisii 18 -0.08 0.10 2.3

Nyeri Garissa 18 -0.21 0.03 8.6

Nyeri Mombasa 4 0.04 0.18 1.1

Nyeri Lodwar 0 0.41 0.43 0.3

Nyeri Kisumu 20 0.04 0.06 3.7

Kisii Garissa 19 0.01 0.05 4.4

Kisii Mombasa 7 -0.03 0.03 7.0

(Continued)
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23A, Hap 79A, Hap 75A, Hap 72A, Hap 27A, Hap 49A, Hap 50A, and Hap 76A, diverged

from a recent common a recent common ancestry with A1_MF169808_(Ethiopia), and were

classified under clade 1. Clade 2 comprised of Hap 43A, Hap 35A, Hap 71A, Hap 41A and

Hap 40A, and had A1_KR816147_(Kenya) as common ancestor. Clade 3 had Hap 83A, Hap

70A, Shap 22A, Hap 60A, Hap 45A, Hap 52A, Hap 21A, Shap 66A, Shap 32A, Shap 1A, Hap

39A, Shap 33A, Hap 37A, Hap 85A, Hap 42A, Hap 19A, Hap 54A, Hap 48A, Hap 53A, Hap

47A, Shap 36A, Hap 5A, Hap 34A, Hap 10A and Hap 44A, with a common ancestor being

A1_MK177886_ (Eldoret, Kenya) and A1_MK484601_(Kenya). Clade 4 recent common

ancestor was A1_MK512473_(Rwanda), and had Hap 20A, Hap 65A, Shap 14A, Hap 46A,

Hap 24A and Hap 68A. Clade 5 involved Hap 7A, Shap 8A, Hap 77A and Hap 87A, which

clustered with A1_MK484598_(Kenya) and A1_OM389878_ (South Africa). Clade 6 recent

common ancestor was A4_GQ331048_(Belgium), A1_AB786663_ (Eldoret Kenya),

A1_MK173688_Somali, and entailed Hap 29A, Hap 55A, Hap 61A, Hap 67A, Hap 11A, Hap

26A, Hap 89A, Hap 58A, Shap 12A, Hap 88A and Hap 73A. The remaining clades included

clade 7 (Hap 74A, Hap 80A, Hap 56A and Hap 86A, clustering with A2_AF297624_ from

South Africa and A2_KP234051_ from Belgium), clade 8 (A2_AF297624 from South Africa

and A2_KP234051_ from Belgium grouped with Hap 13A, Hap 9A, Hap 78A and Shap 28A),

clade 9 (Hap 57A, Hap 82A, Hap 38A, Hap 25A, Hap 81A and SHap_33A which clustered

with quasi-A3_AM180624_ from Cameroon as well as with quasi-A3_FJ692599_ from Haiti),

clade 10 (Hap 90C grouped with B1_D23679_(Japan), B2_EU139543_(China),

B3_AB033554_(Indonesia), B4_AB100695_(Vietnam), B5_AB219428_(Philippines),

C1_AB368296_(Japan), C2_AB111946_(Vietnam), C3_X75656_(Polynesia), C4_AB048704_

(Australian Aborigine) and C5_AB241110_(Philippines), clade 11 (Hap 59C clustered with

E_AB106564_(Ghana), E_AB194947_(Cameroon), F1_AY090461_(El_Salvador), and clade 12

(Shap 15D, Hap 30D, Shap 16D, Hap 2D, Hap 51D, Hap 3D, Hap 69D, Hap 18AD, Shap 62D,

Hap 31D, Hap 84D, Hap 63D and Hap 6C, and were related with D6_FJ904403_(Tunisia),

D4_GQ922004_(Canada) and D4_FJ692533_ collected from Haiti).

Protein surface mutations

Alignment of the surface protein of the 194 isolated HBV alongside reference genotype A and

E and subsequent sequence led to the detection of 65 amino acid exchanges. The percentage of

samples with these mutations was 71.7% (139/194). In sum, 65 mutations were detected in 139

of the 194 samples analyzed. The overall S gene mutation rate of HBV among HBV DNA-posi-

tive sera was 115/169 (68.1%) within genotype A samples, 22/23 (95.7%) for genotype D, with

genotype C reporting 3/3(100%) In this study, 19 of the 65 mutations (29.2%) were located

Table 4. (Continued)

Population No. of shared polymorphic sites Fst GammaSt GammaSt Nm

Kisii Lodwar 0 0.81 0.55 0.2

Kisii Kisumu 19 0.07 0.05 5.2

Garissa Mombasa 5 0.12 0.11 2.0

Garissa Lodwar 0 0.61 0.31 0.6

Garissa Kisumu 22 0.09 0.07 3.5

Mombasa Lodwar 0 0.88 0.70 0.1

Mombasa Kisumu 8 0.17 0.07 3.2

Lodwar Kisumu 0 0.80 0.28 0.6

Fst: Fixation index, Nm: Number of migrants

https://doi.org/10.1371/journal.pone.0291378.t004
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within the “a” determinant, 73.7% (14/19) in the first loop (amino acid positions 120–137) and

26.3% (5/19) in the second loop (amino acid positions 139–147). The mutations in the ‘‘a”

determinant region included; K122R, T123S, T125M, T126S, P127T, P127L, A128D, Q129P,

Q129R, N131T, F134Y, F134L, F134V and P135H in the first loop of ‘‘a” determinant and the

rest of substitutions including T140G, T140S, T143S, T143M, D144G occurred in the second

loop of ‘‘a” determinant. Of the 19 mutations in the “a” determinant, T143M mutation was

found in 9 different samples, all belonging to HBV genotype A. Outside the MHR, the study

report presence of S193L mutations among 3 samples. Additionally, MHR substitution associ-

ated with immune escape, and found in current study were P127T, E164D, T125M, Q129P,

and P127L. Six different samples had I110L mutations, 5 belonging to HBV/A genotype and 1

from HBV/C1 genotype. The K122R substitution was detected in 26 samples within the MHR.

Furthermore, within the same region, dimorphic codon V168A was observed among 11

Fig 2. Phylogenetic analysis of HBV DNA positive blood donors. HBsAg subgenomic sequences (trimmed to 299 bp) were aligned with GenBank

reference sequences representing HBV genotypes A to F, with the accession numbers provided (black circles); reference sequences from Kenya were

noted. HBV genotype designations for blood donor haplotypes were based on clustering with genotype reference sequences. Genotype A blood

donor haplotypes, red circle; genotype C blood donor haplotype, green circle; genotype D blood donor haplotypes, blue circles; genotype E blood

donor haplotype, yellow circle. Shared haplotype sequences are designated with a triangle in the color of their genotype.

https://doi.org/10.1371/journal.pone.0291378.g002
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samples, as well as codon T114S among 13 samples. Apart from S gene mutation, 9 double

mutations (9/262; 3.4%) were also found in the present study, and it involved HBV genotype

A1 and C1. Double mutations were observed at amino acids positions A159D (Hap_41A; 1/1),

K122R (5/26; Hap_25A, Hap_38A, Hap_57A, Hap_59C and Hap_82A), S113T (1/1;

Hap_90C), T140G (1/1; Hap_41A) and V184A (1/6; Hap_59C), with unshared haplotypes

only involved. Hap_41A experienced 2 double mutations (A159D and T140G), and Hap_59C

had 2 mutations at positions V184A and K122R. Finally, 1 stop-codon, W163STP, within the

MHR, was detected in one sample, belonging to genotype A.

Discussion

This study used genetic diversity indices and haplotype analysis networking to analyze HBV

genetic variation and distribution of corresponding haplotypes in blood donors from different

counties in Kenya. Generally, based on S gene of the analyzed sequences, HBV isolates from

Kenya blood donors exhibited low nucleotide diversity and high haplotype diversity. Exhibi-

tion of low nucleotide and high haplotype diversity hints at a possible trend in important func-

tional genes in hepatitis viruses since similar findings have also been recorded on capsid

protein VP3/VP1 genes in Hepatis A virus isolates from Palestine [31]. Similarly, this could

also suggest that the HBV isolates with high homozygosity either possess a fitness advantage in

the sampled regions within Kenya. Kisumu, Machakos, and Eldoret counties had the highest

number of detected haplotypes compared to the other investigated counties, and the reasons

for this could not be determined, therefore it remains a subject for further research. This

study’s 71.7% mutation rate on HBV’s S region is greater than the previously reported rate of

42.3% among HBV isolates from donor blood [32]. Nonetheless, this was lower than another

mutation analysis research from Kenya, which found that 100% (14/14) of the isolates had

amino-acid alterations [33]. This disparity can be due to the large number of samples included

in our investigation.

High variations on HBV S gene from Kenya blood donors were observed within isolates

population as compared to between isolates population from different counties. The observed

high degree of variation within isolates in a county and low heterozygosity between isolates

from different counties is ascribed to low levels of population structure and high levels of gene

flow across counties or a lack of barriers to gene flow or spread of HBV infections [34]. This is

exacerbated by the movement of infected individuals from one county to another, whether for

treatment or for other purposes like as commerce [35]. As a consequence, most HBV haplo-

types based on S gene sequences in this research were shared or common among Kenyan

counties.

Based on haplotype groupings, high number of HBV isolates among blood donors in Kenya

were genotype A, subtype A1. Indeed, results from this study suggest that genotype A1

sequences from Africa are somewhat conserved within the HBsAg sub genomic region. The

study’s findings on the high prevalence of HBV subtype A1 corroborates prior studies on sub-

types of HBV that were isolated from donor blood within Nairobi County, liver disease

patients, and drug users [36–40]. Within A1 subtype, 9 different clusters were observed, this

suggest that there are minimal variations that might be of importance to the survival of the

HBV within host in Kenya. The findings imply that the A1 HBV subtype has recently under-

gone population expansion or purifying selection processes that limit genetic diversity, such as

a selective sweep or bottleneck, as previously seen in HAV [31], as evidenced by the negative

Tajima D results.

Other HBV subtypes observed to be in circulation in donors’ blood in Kenya included C,

D, and E. In contrast to the widely distributed A1 subtype, genotype C is strongly associated
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with development to advanced liver disease, compared to all other genotypes [41–44], was

restricted to Kisumu, and occurred at a lower frequency as previously reported in Mombasa

[45]. The subtype has been described to be prevalent (17.2%) among patients presenting with

liver disease in Eritrea [46] and has also been isolated in Vietnam, Myanmar and Thailand and

linked to serious liver disease [47, 48].

Genotype D was found in blood of donors from nine counties but not in Embu or Mom-

basa. Genotype D is known to have a better survival, immune evasion mechanisms and is asso-

ciated with rapid progression of disease, and death related to liver disease than other

genotypes [49–52]. Also, genotype D is associated with Occult hepatitis B infection (OBI) [53–

55]. Based on influence of the observed mutations on antigen functionality, 19 mutations were

traced to “a” determinant region of S antigen. The observed mutations in the “a” determinant

region were more compared to mutations that were previously reported [32, 37, 56, 57]. Key

mutation observed in “a” determinant region included non-synonymous change T143M, that

was present in 9 different samples, all belonging to HBV genotype A which is also reported by

other studies [32, 58]. Presence of T143M mutations in Kenya raises alarm since it is associated

with antigenic property alteration, escape to vaccine, failed diagnostic assays [32, 40], and

problem in HBIg therapy [59]. Other mutations in this region included K122R, T123S,

T125M, T126S, P127T, P127L, A128D, Q129P, Q129R, N131T, F134Y, F134L, F134V and

P135H in the first loop of ‘‘a” determinant and the rest of substitutions including T140G,

T140S, T143S, T143M, D144G occurred in the second loop of ‘‘a” determinant. Other non-syn

mutations that were observed in Kenya isolates include sE164G, sG119R, Q129R, and sS193L

which have been associated with HBsAg diagnostic test escape, immune response escape, and

HBIg escape [60–63].

The MHR substitutions associated with immune escape in this study included the K122R,

P127T, E164D, D144G, T125M, Q129P, and P127l and corroborates isolates from other coun-

tries such as Iran and Turkey [40, 64–68]. In addition, the study identified a T114P mutation

occurring within the MHR region but outside the “a” determinant region in three isolates.

This mutation T114P occurs within MHR region but outside the “a” determinant region, and

is known to affect the detection of the HBsAg and was observed at a frequency>3% more as

compared to other studies [40]. Compared to previous reports by Moradi et al., [56], where

I110L mutation was observed in only HBV/D genotype, this study reports presence of this

mutation in six isolates from HBV/A (five isolates) and HBV/C (one isolate) genotypes. The

mutation dimorphic codon I110L, is also liked to HBsAg diagnostic test escape mutations and

immune response escape mutations [60–63].

Finally, 1 stop-codon, W163STP, within the MHR, was detected in one sample, belonging

to genotype A. Stop-codons can determine the accumulation of truncated HBsAg in the endo-

plasmic-reticulum, thus inducing oxidative stress and in turn enhancing hepatocytes prolifera-

tion [69, 70]. The study findings contrast previous study where stop-codon were detected at 20

HBsAg-positions including 172 and 182 [71]. However, the modern HBV surface antigen

assays are able to detect most MHR variants that failed to detect in the past failed detection

[72], and in fact the substitutions we established in our study were among the cases identified

through a positive HBsAg test result.

Conclusion

Despite having considerable haplotypic variation, the S gene region of HBV isolates from

Kenya had low nucleotide diversity. This study demonstrates for the first time the frequency

and geographic distribution of HBV genotypes in Kenya among a large cohort of blood

donors, with HBV genotypes A and D predominating. Furthermore, because of the high
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prevalence of HBV/A and HBV/D, progression to the chronic phase of the illness, including

the formation of HCC, is a possibility for Kenyan HBV patients. The presence of HBsAg muta-

tions in MHR in virtually all isolates highlighted the need of monitoring MHR mutations in

Kenya. Moreover, escape mutations related with diagnostic failure, vaccination escape, and

immunoglobulin treatment have been reported herein.
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