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A B S T R A C T   

Tea has been shown to contain metabolites that exhibit antioxidant, anti-inflammatory, anti-diabetic, anti-cancer 
and anti-cardio vascular diseases properties. This study aimed to carry out an in silico assessment of catechins on 
the genes previously shown to be involved in Triple Negative Breast Cancer (TNBC) disease and also to evaluate 
the effects of catechin extracts from purple (TRFK306) and BB35 tea clones on the expression patterns of genes in 
the 4T1 TNBC cell line as mentioned above. Identification and quantification of different catechin contents in 
these two tea clones were performed by using High-Performance Liquid Chromatography (HPLC). In silico 
assessment including Absorption, Distribution, Metabolism and Excretion (ADME) study for drug-likeness 
evaluation, Drug target prediction, Protein-protein interaction (PPI) network analysis and construction, Gene 
Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment and analysis for targets and 
Molecular docking study was conducted. Simplified Molecular Input Line Entry System (SMILES) of 4 different 
tea catechins showed a target on 111 genes in TNBC and have high binding affinity to the receptor-binding 
pocket of chain A of Epidermal Growth Factor Receptor (EGFR) Extracellular Domains. Catechin extracts pro-
moted the downregulation of expression of 6 genes (Egfr, App, Bcl2, Dnmt, Hif1a and Psmb5) and the upregulation 
of 2 genes (Casp3 and Gadd45b) in the 4T1 TNBC cell line. Catechin extracts from purple tea clones showed 
higher activity on gene expression levels of Egfr, Bcl2 and Casp3 than catechin extracts from BB35 tea clone.   

1. Introduction 

Breast cancer is the second leading cause of mortality and morbidity 
among cancer diseases worldwide [1]. TNBC is the most aggressive 
breast cancer and most difficult to treat mainly due to its poor prognosis; 
it is considered as breast cancer lacking the expression of Progesterone 

Receptor (PR), Oestrogen Receptor (ER), and with downregulation of 
gene expression of Human Epidermal Growth Factor Receptor-2 gene 
(HER-2) [2,3,4]. With no prior history of breast cancer, Triple Negative 
Breast cancer (TNBC) is very difficult to diagnose based on the 
morphological and immunohistochemistry assessment alone [5]. 
Treatment of TNBC is based mainly on chemotherapy, radiotherapy and 
surgery. TNBC is one of the sub-types of breast that respond well to the 

☆ Egfr: Epidermal growth factor receptor. App: Amyloid-beta precursor protein. Bcl2: B-cell lymphoma 2. Dnmt: DNA (cytosine-5)-methyltransferase1. Casp: 
Caspase-3. Hif1a: Hypoxia-inducible factor 1-alpha. Gadd45b: DNA-damage-inducible beta. Psmb5: Proteasome subunit beta type-5. TNBC: Triple Negative Breast 
Cancer; ADME: Absorption, Distribution, Metabolism and Excretion PPI: Protein-protein interaction; GO: Gene Ontology; KEGG: Kyoto Encyclopaedia of Genes and 
Genomes, SMILES: Simplified Molecular Input Line Entry System. 
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standard chemotherapy drugs. However, more than 70% of the patient 
do not achieve a complete response thus causing higher mortality rates 
compared to the non-TNBC subtypes [5]. 

Catechins (flavan-3-ols) are the polyphenols found in numerous 
plant sources including many herbs, vegetables, fruits, and beverages 
(grapes, red wines, strawberries, green tea, kiwi, gooseberries, etc) [6]. 
Fresh tea leaves, Green algae (Acetabularia ryukyuensis), Red algae 
(Chondrococcus hornemannii), black grapes, strawberries and red wines 
are reported to have a high content of catechins [7]. Tea catechin con-
tent is varietal (clonal) dependent and depends on the different modes of 
tea processing as reported in our previous findings; BB35 tea clone and 
purple (TRFK 306) tea clone were reported to contain high concentra-
tions of catechins and Epigallocatechin gallate (EGCG), respectively [3]. 
Tea, mainly green tea is known as one of the best sources of catechins 
among the most consumed beverages; many in vitro and in vivo studies 
reported the association between its consumption and the decrease in 
the risks of breast cancer diseases [8]. Catechins were reported to have 
antioxidant activity in vitro and in vivo [6]. They exhibit anticancer ef-
fects on various cancers and related disorders by affecting molecular 
mechanisms involving angiogenesis, extracellular matrix degradation, 
the regulation of cell death and multidrug resistance [6,9,10]. Green tea 
catechins are bioactive compounds showed to have the capacity to 
prevent cancer progression by modifying functional processes such as 
cellular multiplication, metastasis, and cell differentiation [11]. Epi-
gallocatechin gallate (EGCG) which is one of the eight catechins [3] 
showed the capacity to initiate apoptosis in mammary carcinoma cells in 
vitro [12]. Catechins extracts showed antiproliferative activity against 
different cancer cell lines like HeLa human cervical cancer cells [13], 
TNBC 4T1cells and HS578T cells [3,14], Breast cancer MCF-7 cells [15]. 
Tea catechins were reported to have synergism with some chemotherapy 
drugs and with anti-oxidant natural substances to reduce the dose or to 
enhance the anti-cancer effects [3,16]. The main challenge of using tea 
catechins in the treatment of cancer is their limited efficient systemic 
studies [14]. The evaluation of catechin-gene targets and gene expres-
sion of TNBC-related genes can contribute to the use of tea catechins in 
the treatment of breast cancer diseases. 

This study aimed to carry out an in silico assessment of the effect of 
catechins in TNBC, and to determine the gene expression of eight genes; 
Egfr, App, Bcl2, Dnmt, Casp3, Hif1a, Gadd45b and Psmb5 genes after 
treatment of TNBC cell (4T1) line with tea catechin extracted from BB35 
and purple (TRFK 306) tea clone. 

2. Materials and methods 

2.1. Sample collection and catechins isolation 

Tea shoot samples were collected from 14 distinct tea clones grown 
in Rwanda and Kenya; two leaves and buds were taken for each tea shoot 
sample and 4 samples were collected for each tea clone. The samples 
were directly brought to the laboratory by using cooler box. Plant 
identification and authentication were completed in the Botanical Gar-
den of the INES Ruhengeri-Institute of Applied Sciences, Rwanda and 
the accession number (INSH2346) was given by the botanist. Isolating 
the catechins was accomplished by using the techniques described by 
[17]. Steaming the fresh tea leaves for 40 s at 100 ◦C was followed by 
drying them for 40 min at 100 ◦C, 35 ◦C for 40 min, and 80 ◦C for 90 min, 
and finally, ground. After combining 10 g of ground tea with 200 mL of 
40% ethanol, the mixture was placed in a sonicator at 40 ◦C for 2 h. The 
filtration of the mixture was done, followed by the evaporation of 
ethanol by using the vacuum rotary evaporator at 45 ◦C and then the 
remaining volume after evaporation, was adjusted by using distilled 
water to a volume of 200 mL and mixed with an equal volume of ethyl 
acetate and waited for 30 min for partition. The layer of ethyl acetate 
was collected and 200 mL of fresh ethyl acetate was added two times to 
the remaining aqueous layer. All layers of ethyl acetate collected were 
evaporated by using a vacuum rotary evaporator at 40 ◦C. The 
remaining mixture containing catechins and caffeine, was adjusted to a 
final volume of 200 mL by using distilled water followed by three times 
of the decaffeination process using dichloromethane (200 mLx3). The 
decaffeinated top layers were retained and, the bottom layers of 
dichloromethane were eliminated. The aqueous solution containing 
catechins was freeze-dried by using mrc freeze dryer FDL-10N-50-8 M. 

2.2. HPLC analyses 

Four different main catechins: (− )-Epigallocatechin (EGC), (− )-Epi-
catechin (EC), (− )-Epigallocatechin gallate (EGCG), and (− )-Epi-
catechin gallate (ECG) were identified and quantified by using HPLC 
method and respective HPLC standards. All HPLC standards were pur-
chased from Solarbio Life Sciences Company, Beijing, China: EC (cat #: 
SE8100), ECG (cat #: SE 8110), EGCG (cat #: SE 8120) and EGC (cat #: 
SE 8130); the purity was >98%. The HPLC method used was described 
in our previous study[3] and by following the method developed by 
[18]. Shimadzu HPLC system equipped with SIL-20 A HT auto-sampler 
and Shimadzu SPD-M20A Prominence Diode Array Detector set at 
wavelength 254 nm was used. CTO-10AS VP oven was set at 40 ◦C and 
HPLC column: OCG-4252-E0 Luna® 5 μm C18 (2) (250 × 4.6 mm) was 
used. The mobile phase was prepared as follow: water: acetonitrile 
(87:13) containing 0.05% Trifluoroacetic acid (TFA) (V/V), the isocratic 
mode was used and the flow rate was set at 1 mL/minute with the in-
jection volume of 20 μL. Shimadzu LabSolution CS software was used for 
HPLC analysis and for making calibration curves with 5 different levels 
of concentrations of HPLC standards. 

2.3. In silico study 

2.3.1. ADME study for drug-likeness evaluation 
To evaluate the drug-likeness of different main catechins from both 

BB35 and purple tea clone, pharmacokinetic (PK)) parameters (Ab-
sorption, Distribution, Metabolism and Excretion: ADME) were evalu-
ated. The evaluation of those pharmacokinetic parameters is based on 
Lipinski’s rule of five (RO5) which describes the relationship between 
pharmacokinetic and physicochemical parameters. Molecules or candi-
date drugs should not be orally taken as medicine if two or more of those 
rules of 5 are not met [19]. The PubChem online database (https://p 
ubchem.ncbi.nlm.nih.gov/) was used to collect the Canonical Simpli-
fied Molecular Input Line Entry System (SMILES) of 4 different tea 
catechins analysed by HPLC (ECG, EC, EGCG and EGC) [20], then after, 

Abbreviation 

Egfr Epidermal growth factor receptor 
App Amyloid-beta precursor protein 
Bcl2 B-cell lymphoma 2 
Dnmt DNA (cytosine-5)-methyltransferase1 
Casp Caspase-3 
Hif1a Hypoxia-inducible factor 1-alpha 
Gadd45b DNA-damage-inducible beta 
Psmb5 Proteasome subunit beta type-5 
TNBC Triple Negative Breast Cancer 
ADME Absorption, Distribution, Metabolism and Excretion 
PPI Protein-protein interaction 
GO Gene Ontology 
KEGG Kyoto Encyclopaedia of Genes and Genomes 
SMILES Simplified Molecular Input Line Entry System  
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those SMILES were submitted to SwissADME (http://www.swissadme. 
ch/) for drug-likeness evaluation [21]. 

2.3.2. Drug target prediction 
Drug target prediction was done in three major steps: firstly, general 

targets of SMILES of 4 different tea catechins was done, secondly the 
prediction of disease-related genes, and lastly the screening out of only 
potential targets of TBNC-related genes. Prediction of general targets of 
4 different tea catechins was done by using 3 different databases: 
BindingDB, Suiss TargetPrediction and PharmMapper databases. Each 
catechin SMILES was uploaded in BindingDB database https://www.bin 
dingdb.org/rwd/bind/chemsearch/marvin/FMCT.jsp), similarity was 
set at ≥0.7 [22] and the target gene names were converted into gene IDs 
from UniProtKB (https://www.uniprot.org/) [23]. Similarly, each 
SMILES was uploaded into Suiss TargetPrediction database (www.swisst 
argetprediction.ch/), only gene targets with probability of at least 0.10 
similarity were selected [24]. Again each SMILES was uploaded into 
PharmMapper databases (https://www.lilab-ecust.cn/pharmmapper/), 
Mus musculus was selected as the target species, only gene with 
normalized ≥0.7 were selected as the target gene [25] and their names 
were converted into gene IDs from UniProtKB (https://www.uniprot. 
org/) [23]. The genes from all these databases were combined to 
remove duplicates. 

The prediction of TNBC-related genes was done by using GenCards 
database (https://www.genecards.org/) [26], the Comparative Tox-
icogenomics Database (CTD) (https://ctdbase.org/) [27] and DisGeNET 
platform (https://www.disgenet.org/search) [28]. Triple Negative 
Breast Cancer (TNBC) was input to search disease-related genes. All 
genes from those 3 databases/platforms were combined to remove the 
duplicates. Finally, the potential genes related to TNBC and catechins 
target genes were intersected in the Venn diagram by using the Bioin-
formatics and Evolutionary Genomics platform (https://bioinformatics. 
psb.ugent.be/webtools/Venn/). 

2.3.3. Protein-protein interaction (PPI) network analysis and construction 
Common genes (intersection) between catechins’ target genes and 

genes related to Triple Negative Breast Cancer were uploaded to the 
STRING V12.0 database (https://string-db.org/); the organism was set 
as Mus musculus, the confidence score and the false discovery rate (FDR) 
stringency were set at 0.400 and 5 respectively [29]. Topology analysis 
of the PPI network was done by Cytoscape v3.10.1 software. The 10 key 
gene targets were filtered out by using the Maximal Clique Centrality 
(MCC) algorithm of Cytoscape v3.10.0 software. 

2.3.4. The analysis of GO and KEGG enrichment of target genes 
The Gene Ontology (GO) and Kyoto Encyclopaedia for Genes and 

Genomes (KEGG) enrichment analysis [30] was conducted to investigate 
the biological process of the catechins’ gene targets involved in TNBC. 
The targets were mapped to the ShinyGO 0.77 enrichment tool (http://b 
ioinformatics.sdstate.edu/go/) and the terms with rate (FDR) cut-off =
0.05, species = mouse, false discovery. For GO enrichment analysis, the 
biological process (BP), the cellular component (CC), and the molecular 
function (MF) categories were considered [31]. 

2.3.5. Molecular docking study 
The molecular docking study was performed to get a deeper under-

standing of the binding modes and to predict potential interactions be-
tween ligands (SMILES of 4 different tea catechins (ECG, EC, EGCG and 
EGC)) and the receptor-binding pockets of Human Epidermal Growth 
Factor and Receptor Extracellular Domains (PDB ID:1IVO) [32]. This 
protein (receptor) was chosen based on the fact that Epidermal growth 
factor (EGF) is involved in the regulation of cell proliferation and dif-
ferentiation process through binding to the EGF receptor (EGFR) 
extracellular region [33]; and its abnormal activation plays substantial 
role in initiating the oncogenic transformation of cells and their subse-
quent invasive capabilities and eventual escape from the primary 

tumour in various cancers including breast cancer [34]. Those afore-
mentioned SMILES of 4 different tea catechins were retrieved from the 
PubChem online database (https://pubchem.ncbi.nlm.nih.gov/) in SDF 
format [20] which was then transformed into PDB format by using 
PyMol [35]. 

The 3D crystal structure of Human Epidermal Growth Factor and 
Receptor Extracellular Domains (1IVO) was retrieved from the online 
RCSB Protein Data Bank (https://www.rcsb.org/) [36]. Ligands and 
receptor preparation and molecular visualization were done by using 
UCSF Chimera 1.16 software. Autodock Vina 1.1.2 software was used for 
molecular docking. BIOVIA Discovery Studio Visualizer 4.5 software 
was used to visualize the docking results and receptor-ligand interaction 
on the 2D diagram. 

2.4. Cell culture and treatment 

The 4T1 breast cancer cell line was bought from ATCC (Manassas, 
VA, USA). Cisplatin standard was bought from Solarbio Life Sciences, 
Beijing, China (cat #: IC0440). The 4T1 cells were cultured in the cell 
culture laboratory of the Centre of Traditional Medicine and Drug 
Research of Kenya Medical Research Institute (CTMDR-KEMRI). RPMI 
1640 (with 25 mM HEPES and L-glutamine) medium supplemented with 
10% Fetal Bovine Serum (FBS), and 1% Penicillin-streptomycin was 
used to grow the cells and incubation was done by using a CO2 incubator 
set at 37 ◦C and 5% CO2. The half-maximal inhibitory concentration 
(IC50) of catechin extracts and cisplatin was determined and reported in 
the previous publication [3]. The 4T1 cells for gene expression assess-
ment, were grown and treated with IC50 concentration in T75 cell 
culture flasks and for an exposure time of 24, 48 h and 72 h. 

2.5. Gene expression pattern analyses 

The 4T1 breast cancer cells were cultured in T75 cell culture flasks to 
reach 70–80% confluency and treated with IC50 of catechin extracts and 
cisplatin standard for 24 h, 48 h and 72 h. Total RNA was extracted from 
treated cells utilizing a Total RNA extraction kit (Solarbio Life Sciences 
company, Beijing, China) and by following the manufacturer’s in-
structions. The purity and concentration of RNA were assessed by using 
NanoDrop OneC UV–Vis Spectrophotometer (Thermo Scientific) fol-
lowed by assessment of 28 S and 18 S bands on 1% agarose gel elec-
trophoresis. cDNA synthesis was done by using Accuris qMax First 
Strand cDNA synthesis Flex Kit (ACCURIS Life Science Reagents, Edison, 
NJ 08818, USA). Total RNA extracted from different samples were 
diluted and adjusted at 150 ng/μL before cDNA synthesis, and the pro-
cedures were performed according to the manufacturer’s instructions. 
Quantitative Real-Time PCR (qPCR) was performed by using qTOWER3 
- Real-Time PCR Thermal Cycler (analytic Jena). cDNA from different 
samples were diluted and adjusted at 50 ng/μL and HOT FIREPol® 
EvaGreen® qPCR Mix Plus (ROX), 5x kit (SOLIS BIODYNE, Estonia) was 
used for qPCR. A final volume of 20 μL containing 4 μL of HOT FIREPol® 
EvaGreen® qPCR Mix Plus (ROX), 0.5 μL of each of the primers, 1 μL of 
template cDNA and 14 μL of nuclease-free water was prepared and qPCR 
condition was set as follows: Initial activation at 95 ◦C for 10 min to 
activate the polymerase, denaturation at 95 ◦C for 15 s, annealing at 
58.5 ◦C for 30 s and extension at 72 ◦C for 30 s. The primer sequences 
were as follow: Gapdh: forward primer: 5′-GCCTCCTCCAATTCAACCCT- 
3′, reverse primer: 5′-CTCGTGGTTCACACCCATCA-3’; App: forward pri 
mer: 5′TCCGAGAGGTGTGCTCTGAA-3′, reverse primer: 5′-TGGCTTCCA 
GCCTCTCTTTG-3’; Bcl2: forward primer: 5′-CCAACGGGGAAACACCA-
GAA-3′, reverse primer: 5′-AGTTCCACAAAGGCATCCCAG-3’; Casp3: 
forward primer: 5′- AGCTTGGAACGGTACGCTA-3′, reverse primer: 5′- 
GGCCCATGAATGTCTCTCTG-3’; Dnmt1: forward primer: 5′-AGCTGT 
TCTGTCGTCTGCAA-3′, reverse primer: 5′-GCCATTTCTGCTCTCCAGGT- 
3’; Egfr: forward primer: 5′-TGCCAGAATGTGAGCAGAGG-3′, reverse 
primer: 5′-AGGTGATGTTCATGGCCTGG-3’; Gadd45b: forward primer: 
5′-CAGCGTGGTCTTGTGCCT-3′, reverse primer: 5′-CGGTTGTG 
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CCCAATGTCT-3’; Hif1a: Forward primer: 5′-CCTGTAAGCAAGGAGC-
CAGAA-3′, reverse primer: 5′-GTGGCAACTGATGAGCAAGC-3’; Psmb5: 
forward primer: 5′-GCTACAGCGGGTGCTTACAT-3’; reverse primer: 5′- 
TTCCCAGAAGCTGCAATCCG-3′ 

2.6. Statistical analysis 

An excel data sheet was used to calculate each catechin content 
percentage. One-way ANOVA in R software, version R 4.2.1 with a P 
value set at 0.05 was used to determine the significance variations of 
each type of catechin content between different groups, and Least Sig-
nificant Difference Test (LCD) of R software was used to compare 
different means of catechins in different groups. Tukey multiple com-
parison tests (TMCT) in GraphPad Prism 8.0.2 software was used for 
comparison of relative gene expression of different genes. 

3. Results 

3.1. Catechin content in different catechin extracts from BB35 and purple 
tea clones 

Among 14 tea clones assessed, BB35 tea clone was found to have high 
concentration of catechins. Purple (TRFK306) tea clones was found to 
have very high concentration of EGCG. EGCG is known to have more 
anti-cancer and anti-oxidant activities than other catechins. For that 
reason, catechins extracts from these 2 tea clones were retained and used 
in vitro studies. Comparison of catechin contents of all tea clones ana-
lysed were reported in our previous publication [3] and are presented in 
supplementary materials (Supplementary Table S1). Catechin extracts 
from BB35 tea clones had 162.44 ± 26.30 mg g− 1, 122.53 ± 17.15 mg 
g-1, 442.76 ± 20.52 mg g− 1 and 90.07 ± 20.40 mg g− 1 for EGC, EC, 
EGCG and ECG, respectively. Catechin extracts from purple (TRFK 306) 
tea clone had 52.15 ± 10.61 mg g− 1, 88.98 ± 9.68 mg g− 1, 552.2 ±
10.61 mg g− 1 and 104.88 ± 16.86 mg g− 1 for EGC, EC, EGCG and ECG, 

respectively. 

3.2. ADME study for drug-likeness evaluation of tea catechins 

The SMILES of 4 catechins (EGC, EC, EGCG and ECG) used in this 
study are presented in Fig. 1. ADME study of catechins was done to 
evaluate its drug likeness which can be used in the development of 
pharmaceuticals. The results of prediction of drug likeness, physi-
ochemical properties, ADME parameters, pharmacokinetic properties, 
druglike nature and medicinal chemistry of 4 different tea catechins are 
presented in Table 1. 

In terms of physicochemical properties, EC had the lowest molecular 
weight among all 4 catechins analysed (MW of 290.27 g/mol), followed 
by EGC with the MW of 306.27 g/mol, then after ECG with the MW of 
442.37 g/mol; EGCG had the highest MW among other catechins ana-
lysed (458.37 g/mol). The good compound must have low MW (below 
350 g/mol). 

In terms of lipophilicity, all SMILES of catechins were found to be 
predicted as good candidates as they had log P values below Lipinksi’s 
rule-of-five criteria (<5). EGC had the highest lipophilicity among all 
catechins (Consensus Log Po/w of 0.42), followed by EC with Consensus 
Log Po/w of 0.85, then EGCG with Consensus Log Po/w of 0.95 and finally 
ECG with Consensus Log Po/w of 1.3. 

All catechins were water-soluble. EC and EGC had high GI absorption 
while ECG and EGCG had low GI absorption. All catechins had no 
blood–brain barrier (BBB) permeant and were found not to inhibit 
CYP1A2, CYP2C19, CYP2C9, CYP2D6 and CYP3A4. 

In terms of drug-likeness, all catechins were found to respect Lip-
inski’s rules with some minor violations: 0 violation for EC, 1 violation 
(NH or OH > 5) for ECG and EGC and 2 violations (Nor O > 10 NH or 
OH > 5) for EGCG. EC, ECG and EGC had favourable Bioavailability 
Score (0.55) while EGCG had low bioavailability score (0.17). 

In terms of lead likeness, EC and EGC were found to have lead 
likeness as they have MW below 350 g/mol, while ECG and EGCG were 

Fig. 1. SMILES of catechins. A: EGC, B: EC, C: EGCG, D: ECG. Source: PubChem (https://pubchem.ncbi.nlm.nih.gov/)[20].  
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found to not have lead likeness as their MW are above 350 g/mol. All 
catechins analysed showed good permeation or absorption as they had 
MW which is below 500 g/mol) as predicted by the rule of 5’, according 
to SwissADME tools, ECG and EGCG cannot be considered as lead 
compound as such due to MV > 350. 

3.3. Drug target prediction 

The prediction of genes targeted by the aforementioned SMILES was 
done by using 3 different databases (BindingDB, Suiss Target Prediction 
and PharmMapper) and the results of genes targeted by each SMILES 
and in each database, are presented in supplementary materials (Sup-
plementary Table S2). After combining genes targeted by all SMILES in 
each database and after removing the duplicate target genes, 50 targets 
were identified by BindingDB, 15 targets were identified by Suiss Tar-
getPrediction and 71 targets were identified by PharmMapper. The 
duplicate targets from those 3 databases were removed and 124 targets 
were retained. 

GeneCard database, CTD database and DisGeNET platform were used 
to predict TNBC-related genes. 5766 targets were identified by the 
GeneCard database, 14,309 target genes were identified by the CTD 
database and 1663 target genes were identified by using the DisGeNET 
platform. All those genes from 3 databases, were pooled together and the 
duplicate genes were removed, 15,473 genes were retained as unique. 
124 catechin-targeted genes and 15,330 TNBC-related genes were 
uploaded into Venn diagram to search the intersection between genes 
targeted by catechins and TNBC-related genes. The results from the 
intersection are presented in Venn diagram (Fig. 2). 

The analysis of the relationship between genes targeted by tea cat-
echins and TNBC-related genes revealed that 111 genes were intersected 
in the Venn diagram, means that 4 catechins analysed can target 111 
genes in TNBC. Among 124 genes targeted by catechins, only 13 genes 
were found to not belong to TNBC-related genes. 

3.4. Protein-protein interaction (PPI) network analysis 

A total number of 111 intersected targets between catechin-target 
proteins and TNBC-related targets were used to construct the PPI 
network (Fig. 3). The PPI network had 107 nodes, 920 edges, average 
node degree was 17.2, average local clustering coefficient was 0.634, the 
expected number of edges was 334 and PPI enrichment p-value was 
<1.0e-16. Ten key gene targets filtered out by using the Maximal Clique 

Table 1 
Drug likeness parameters of 4 tea catechins Different parameters like physico-
chemical properties (Lipophilicity and water solubility), pharmacokinetics pa-
rameters, drug likeness and medical chemistry of SMILES of 4 catechins were 
evaluated.  

Properties EC ECG EGCG EGC 

Physicochemical Properties 
MW (g/mol) 290.27 442.37 458.37 306.27 
Lipophilicity 
Log Po/w 

(iLOGP) 
1.47 1.7 1.53 0.98 

Log Po/w 

(XLOGP3) 
0.36 1.53 1.17 0 

Log Po/w 

(WLOGP) 
1.22 2.2 1.91 0.93 

Log Po/w 

(MLOGP) 
0.24 0.05 − 0.44 − 0.29 

Log Po/w 

(SILICOS-IT) 
0.98 1.04 0.57 0.49 

Consensus Log 
Po/w 

0.85 1.3 0.95 0.42 

Water Solubility 
Class Soluble Soluble Soluble Soluble 
Pharmacokinetics 
GI absorption High Low Low High 
BBB permeant No No No No 
P-gp substrate Yes No No No 
CYP1A2 

inhibitor 
No No No No 

CYP2C19 
inhibitor 

No No No No 

CYP2C9 
inhibitor 

No No No No 

CYP2D6 
inhibitor 

No No No No 

CYP3A4 
inhibitor 

No No No No 

Log Kp (skin 
permeation) 

− 7.82 cm/ 
s 

− 7.91 cm/s − 8.27 cm/s − 8.17 cm/s 

Drug likeness 
Lipinski Yes, 

0 violation 
Yes, 1 
violation NH 
or OH > 5 

Yes, 2 
violations Nor 
O > 10 NH or 
OH > 5 

Yes, 1 
violation NH 
or OH > 5 

Ghose Yes Yes Yes Yes 
Veber Yes No, 1 

violation 
TPSA> 140 

No, 1 violation 
TPSA> 140 

Yes 

Egan Yes No, 1 
violation 
TPSA> 131.6 

No, 1 violation 
TPSA> 131.6 

Yes 

Muegge Yes No, 2 
violations 
TPSA> 150, 
H-don>5 

No, 3 
violations 
TPSA> 150, 
H-acc >10, H- 
don>5 

No, 1 
violation H- 
don>5 

Bioavailability 
Score 

0.55 0.55 0.17 0.55 

Medicinal Chemistry 
PAINS 1 alert: 

catechol_A 
1 alert: 
catechol_A 

1 alert: 
catechol_A 

1 alert: 
catechol_A 

Brenk 1 alert: 
catechol 

1 alert: 
catechol 

1 alert: 
catechol 

1 alert: 
catechol 

Lead likeness Yes No, 1 
violation 
MW > 350 

No, 1 violation 
MW > 350 

Yes 

Synthetic 
accessibility 

3.50 4.16 4.20 5.53 

Mw: Molecular weight; log Po/w: The n-octanol/water partition coefficient; GI: 
Gastrointestinal; BBB: The blood–brain barrier; P-gp: P-glycoprotein; CYP1A2: 
Cytochrome P4501A2; CYP2C19: Cytochrome P450 2C19; CYP2C9: Cytochrome 
P450 2C9; CYP2D6: Cytochrome P450 2D6; CYP3A4: Cytochrome P450 3A4; 
TPSA: Topological Polar Surface Area. 

Fig. 2. Venn diagram of the intersection between genes targeted by catechins 
and TNBC-related genes. 
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Centrality (MCC) algorithm of Cytoscape v3.10.1 software was namely 
Casp3, Mapk14, Pparg, Mmp3, Serpine1, Src, Bcl2, Egfr, Mmp9 and Kdr 
(Fig. 4). 

3.5. The analysis of GO and KEGG enrichment of target genes 

To investigate the function of catechin target genes in the biological 
process (BP), cellular component (CC), Molecular function (MF) and in 
the pathway of TNBC, 111 catechin targeted genes involved in TNBC, 
were enriched in a total of 1536 GO elements (FDR<0.05). There were 
1000 BP, 146 CC and 390 MF protein targets in Gene Ontology. The top 
10 pathways for each GO enrichment are presented on the dot plot chart 
(Fig. 5). Top 10 catechin-targeted BP are: Response to UV-A, Mast cell 
chemotaxis, Vagina development, Prostate gland growth, Cellular 
response to UV-A, Mast cell migration, Mitotic centrosome separation, 
Thrombin-activated receptor signalling pathway, Centrosome separa-
tion, Epithelial cell differentiation involved in prostate gland develop-
ment. (Fig. 5). 

The top 10 catechin targeted CC are the Endosome lumen, Nuclear 
envelope lumen, Glycinergic synapse, Voltage-gated calcium channel 
complex, Caveola, Terminal bouton, Rough endoplasmic reticulum, 
Plasma membrane raft, Perikaryon, Extracellular organelle (Fig. 5). For 
MF are ABC-type xenobiotic transporter activity, Steroid hormone re-
ceptor activity MAP kinase activity, Efflux transmembrane transporter 
activity, Histone kinase activity, Nuclear receptor activity, Ligand- 

Fig. 3. Protein-protein interaction (PPI) network of catechin target and TNBC-related protein.  

Fig. 4. Ten key gene targets in the interaction network.  
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activated transcription factor activity, Phospholipase activator activity, 
Type I transforming growth factor beta receptor binding, Lipase acti-
vator activity (Fig. 5). GO enrichment and analysis showed that among 
the top 10 BP, response to UV-An involved more catechin gene targets in 
TNBC (5) than in other BP and among the top 10 MF, nuclear receptor 
activity and ligand-activated transcription factor activity involved many 
catechin gene targets in TNBC (8 genes for each) than in other MF. 
response to UV-A biological process (BP) has been shown from decades 
to relation with carcinogenesis. 

The following catechin target genes are found in the TNBC signalling 
pathway: Egfr, Kit, Akt Erk1/2 (Mapk 1) (Fig. 6. A.). The 10 examples of 
catechin targeted pathways in KEGG are AGE-RAGE signalling pathway 
in diabetic complications, Endocrine resistance, IL-17 signalling 
pathway, Oestrogen signalling pathway, Relaxin signalling pathway, 
Fluid shear stress and atherosclerosis, MicroRNAs in cancer, Hepatitis B, 
Lipid and atherosclerosis, Pathways in cancer. 

3.6. Molecular docking study 

The 4 SMILES of catechins were docked into a receptor-binding 
pocket of chain A of EGFR Extracellular Domains (PDB ID: 1IVO) that 
has 4 chains and 8 receptor-binding pockets for N-acetyl-beta-D- 
glucosamine (NAG) ligand (Fig. 7. A). Chain A was used, it has 5 
receptor-binding pockets for NAG (Fig. 7. B). The characteristics of 
binding site amino acids are presented in Table 2. 

All catechins analysed showing the binding affinity to the receptor 

1IVO in the range of − 8.1to − 8.4 kcal/mol. EC, ECG, EGCG and EGC 
binding to 1IVO with a binding energy of − 8.2 kcal/mol, − 8.1 kcal/mol, 
− 8.3 kcal/mol and − 8.4 kcal/mol, respectively (Table 3). 

EC binds onto the receptor-binding pocket of chain A of 1IVO spe-
cifically on the following residues: Thr339, Tyr292, Arg310, Lys311, 
Ser291, Gly288, Cys287, Ser340, Lys375, Glu376, Val312, Glu293, 
Ala286, Thr378 with the following bonds: van der Waals, conventional 
hydrogen bond and Pi alkyl (Fig. 8. A). 

EGC binds onto the receptor-binding pocket of chain A of 1IVO 
specifically on the following residues: Thr339, Tyr292, Arg310, Lys311, 
Thr378, Cys287, Ser340, Lys375, Glu376, Val312, Glu293, Ser291, 
Gly288, Ala286 with the following bonds: van der Waals, conventional 
hydrogen bond, unfavourable donor-donor bond and Pi alkyl (Fig. 8. B). 

EGCG binds onto the receptor-binding pocket of chain A of 1IVO 
specifically on the following residues: Val36, Ala62, Asn86, Ala265, 
Phe230, Leu38, Arg84, Lys229, Cys227, Val226, Glu60, Lys4, Val6, 
Arg231Thr266, Glu3 with the following bonds: van der Waals, con-
ventional hydrogen bond, carbon hydrogen bond, unfavourable donor- 
donor bond, Pi-alkyl, pi-cation, pi-anion (Fig. 8. C.). 

ECG binds onto the receptor-binding pocket of chain A of 1IVO 
specifically on the following residues: Met294, Arg300, Glu295, Lys375, 
Glu376, Glu293, Thr378, Tyr292, Cys287, Gly288, Ser340, Val312, 
Arg310, Lys311, Thr339 with the following bonds: van der Waals, 
conventional hydrogen bond, unfavourable donor-donor bond, Pi-pi T- 
shaped, pi-alkyl (Fig. 8. D.). 

Fig. 5. Catechin GO enrichment analysis. At the Y-axis are the names of GO pathways, and at the X-axis are the fold enrichment. The size and colour of bubbles 
represent the number of genes; large bubbles indicate many genes involved in the pathway. 
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3.7. Gene expression pattern analyses 

To assess the gene expression levels of 8 different genes, the Livak 
method (ΔΔCT method) was used and the Gapdh gene was used as a 
housekeeping gene. Cisplatin was used as a standard chemotherapy drug 
and as a positive control. Among 8 genes assessed, 6 genes were 
downregulated while 2 genes were upregulated in treated samples. 
Downregulated genes are Epidermal growth factor receptor (Egfr), 

Amyloid-beta precursor protein (App), B-cell lymphoma 2 (Bcl2), DNA 
(cytosine-5)-methyltransferase1 (Dnmt1), Hypoxia-inducible factor 1- 
alpha (Hif1a) and Proteasome subunit beta type-5 (Psmb5). Upregu-
lated genes are Caspase-3 (Casp3) and Growth arrest and DNA-damage- 
inducible, beta (Gadd45b Downregulated genes as well as upregulated 
genes showed different levels of expression in different cell treatments 
(Fig. 9). 

Fig. 6. KEGG signalling pathway analysis for targets. A. Breast cancer pathway and target genes of catechins. The catechin target genes are highlighted in red in the 
pathway. B. Catechin KEGG enrichment analysis. At the Y-axis are the names of KEGG pathways, and at the X-axis are the fold enrichment. The size and colour of 
bubbles represent the number of genes; large bubbles indicate many genes involved in the pathway. 
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4. Discussion 

EGCG content in catechin extracts from these two tea clones used in 
vitro study was high compared to other catechins analysed. This higher 
concentration of EGCG than other catechins corroborates the previous 
findings [37,38]. 

High MW of EGCG and ECG might be the cause of their low GI ab-
sorption which the latter in turn causes their low bioavailability (M. J 
[39]). reported that the absorption depends on the physical-chemical 
properties of molecules (pka, hydrophilicity, size, molecular configu-
ration and solubility) and their conjugated derivatives. The bioavail-
ability of EGCG is lower than other catechins, this finding corroborates 
the findings of [40] who found that EGCG has an absolute bioavailability 
of 0.14 after oral administration in male Sprague Dawley rats. This 
cannot abolish their chemopreventive properties as they can synergis-
tically conjugate with other catechins and increase their bioavailability 
as [41] found that methylated EGCG showed a higher inhibitory effect 
than EGCG alone. EGCG and ECG cannot be considered as lead com-
pounds as such due to MW > 350; for that, lead optimization must be 
done to improve the MW and to reduce any other deficiencies that can be 
found in their structure [42]. A drug candidate having log P values 
beyond Lipinksi’s rule-of-five criteria (>5) is likely to be associated with 
undesired drug properties, such as rapid metabolic turnover, poor 
aqueous solubility, high plasma protein binding, and tissue 

accumulation; in addition, a drug candidate with too high lipophilicity 
can likely be associated with in vivo toxicity [43,44]. 

The PPI network constructed by using the catechin target genes in 
TNBC showed significantly more interactions than expected (an 
enrichment P value below 1.0e-16), according to STRING V12.0 data-
base, proteins had higher interaction among themselves than what 
would be expected for a random set of proteins of the same size and 
degree of distribution found in the genome. As reported by [29], such an 
enrichment indicates that the proteins are at least partially connected as 
a group. The network constructed showed ten key catechin target genes. 
Those genes are reported to be involved in cancer development, pro-
gression and treatment: Casp3 gene [45], Mapk14 gene [46], Pparg gene 
[47] ([48], Mmp3 and Mmp9 genes [49,50], Serpine1gene [51–53], Bcl2 
gene [54,55], Egfr gene [56,57,58], Kdr gene [59]. These results could 
confirm the anti-proliferative effects of catechins as reported in previous 
reports on the anticancer effects of tea catechins [3,8,12,13,60]. 

GO enrichment and analysis revealed that catechins target key BP, 
CC and MF; this could confirm their role in the prevention and treatment 
of different cancer diseases: The damages caused by UV-A to bio-
molecules such as DNA damage, and lipid peroxidation are strongly 
implicated in both cell death and cell transformation to malignancies 
[61]. Nuclear receptors play a key role in the regulation of physiological 
processes and are known to have pro-oncogenic and ant-oncogenic ac-
tivities [62]. Many Transcription Factors (TFs) have been reported to be 

Fig. 7. The 3D crystal structures of Human Epidermal Growth Factor and Receptor Extracellular Domains (1IVO). A. whole structure. Each colour represents a 
specific chain or ligands (blue: chain A, cyan: chain B, green: chain C, yellow: chain d, grey with red dots: NAG ligands).; B. structure of chain A (blue colour). 

Table 2 
Characteristics of binding site amino acids.  

Amino acids Hydrophobicity Pka Avg. Isotropic displacement Interactions PDB secondary Secondary 

A: THR358 − 0.7  77.231 Van der Waals Undefined Turn 
A: THR360 − 0.7  72.414 Van der Waals Undefined Turn 
A: SER326 − 0.8  72.262 Van der Waals Undefined Coil 
A: MET 294 1.9  132.189 Van der Waals Undefined Coil 
A: LYS 229 − 3.9 10.4 87.454 Van der Waals Undefined Coil 
A: ILE316 4.5  40.078 Van der Waals Undefined Coil 
A: ILE 327 4.5  37.385 Van der Waals Undefined Coil 
A: ILE332 4.5  57.016 Van der Waals Helix Turn 
A: ASP323 − 3.5 3.9 76.306 Van der Waals Undefined Turn 
A: ASN328 − 3.5  71.224 Covalent hydrogen bond Helix Coil 
A: PHE321 2.8  58.355 Van der Waals Helix Helix 
A: VAL312 4.2  142.941 Van der Waals Undefined Coil 
A: ASN 331 − 3.5  126.241 Covalent hydrogen bond Helix Helix 
A: ASN328 − 3.5  71.224 Covalent bond Helix Coil 
A: GLU376 − 3.5 4.3 61.009 Van der Waals Sheet sheet 

Fifteen amino acids are found in the binding sites used for docking study (see Table 3). Among those amino acids, six of them are hydrophobic. Ligand is interacted with 
the receptor with 1 covalent bond, 2 covalent hydrogen bonds and 13 Van der Waals bonds. 

J. Ndacyayisenga et al.                                                                                                                                                                                                                        



Informatics in Medicine Unlocked 46 (2024) 101469

10

critical for cancer development and progression [63]. KEGG enrichment 
and analysis showed that 30 catechin target genes were involved in 
cancer pathways and 16 genes were involved in breast cancer pathways, 
this is confirmed the role of catechins in the prevention and treatment of 
different cancer diseases as reported in the previous findings [3,8,12,13, 
60]. 

Molecular docking revealed that SMILES of all 4 catechins bound 
onto the receptor binding pocket of chain A of EGFR Extracellular Do-
mains (PDB ID: 1IVO). The binding affinity of ligands to the receptors is 
determined by the binding energy (Kcal/mol); the high binding affinity 
is shown by the low binding energy. All SMILES of 4 catechins showed 
slightly similar to the binding affinity of the Erlotinib compound used to 
treat some cancers. Saini et al. [64] reported that the Erlotinib-EGFR 
complex had − 7.5 kcal/mol and [65] found the binding affinity of 
− 9.34 kcal/mol. This suggests that catechins can work as EGFR in-
hibitors. Our findings are different from those of [66] who did molecular 
docking of EGCG and its derivatives at the ATP-binding pocket of EGFR 
and found that EGCG binding affinity was − 5.18 kcal/mol and its de-
rivatives had a binding affinity of 0.47 kcal/mol, and 1.81 kcal/mol for 
[4″-O-(2⁗,3⁗,4⁗,6⁗-tetra-O-butyr-
yl-β-D-glucopyranosyl)]-(− )-epigallocatechin-3-gallate and [4′-O-(2‴,3‴, 

4‴,6‴-tetra-O-butyryl-β-D-glucopyranosyl)-4″–(2⁗,3⁗,4⁗,6⁗-tetra-O-bu-
tyryl-β-D-glucopyranosyl)]-(− )-epigallocatechin-3-gallate, respectively. 

Catechin extracts from purple (TRFK306) tea clone showed higher 
effects on gene expression than ones from BB35 tea clones, these may be 
due to its high concentration in EGCG content as the latter is reported in 
previous findings that it has higher anti-proliferative activity than other 
catechins [3,67,68]. Purple tea, in addition to catechin content, contains 
anthocyanins which are reported to have anti-cancer effects [69,70]. A 
high effect on gene expression was found after 48 h, this may be due to 
that most in vitro experiments on the cell line are conducted when the 
cells are in the log phase of growth, consequently, the cells progress into 
the station phase and then death phase as the exposure time is increasing 
e [71,72]so at 48 h, the cells might have been already in the stationary 
phase. At this phase, cellular metabolism is still active and the expres-
sion of the genes essential for cell survival is high at this phase even if the 
cells cease to grow [73]. 

Downregulation of gene expression level of the following genes, Egfr, 
App, Bcl2, Dnmt1, Hif1a, and Psmb5 was due to the antiproliferative 
activity of catechin extracts and cisplatin on the 4T1 TNBC cell line. 
These genes are upregulated in cancer development: Egfr gene expres-
sion is involved in the regulation of breast carcinoma development [74]; 
App gene is upregulated in much various cancer including breast cancer 
and it promotes the metastasis of breast cancer cells by acting on the 
MAPK signalling pathway [75]; Bcl2 upregulation is involved in devel-
opment of breast cancer by inhibiting apoptosis mainly in Luminal 
breast cancer [55]; Dnmt1is involved in development of breast cancer by 
inducing MEG3 hyper-methylation [76] its overexpression is associated 
with development of TNBC subtype [77]. Hif1a plays a significant role in 
breast cancer migration and invasion by mediating hypoxia-induced 
translation of mRNA-encoding genes (Zhao ji [78]) its overexpression 
is found in brain metastasis from breast cancer [79]. The Psmb5 gene is 
overexpressed in TNBC [80] [81]). Catechins extracts provoked the 
upregulation of Casp3 and Gadd45b genes. Casp3 is considered a key 
enzyme that triggers a series of events that lead to apoptosis [82]. The 
overexpression of Gadd45b has been found to inhibit the growth of 
various tumour cell lines [83]. This overexpression of Casp3 and 
Gadd45b gene in the 4T1 TNBC cells treated with catechin extracts ex-
plains the antiproliferative activity of the latter on 4T1 cells. Catechin 
extracts from purple and its combination with cisplatin caused higher 
expression of Casp3 than catechin extract from BB35 tea clones and its 
combination with cisplatin, these was due to the high content of EGCG in 
purple tea clones [67]. found that EGCG promotes overexpression of 
Casp3 and apoptosis in prostate cancer cell lines. EGCG which is present 
in high concentration in purple tea was reported in our previous pub-
lication to have synergism with cisplatin [3] and this might be the 
reason for the high Casp gene expression of the combination of cisplatin 
with catechin extracts from purple tea clone. EGCG due to having 3 
rings: A, B and D might have been the reason for its synergism with 
cisplatin, as rings B and D were reported to be involved in the inhibition 
of proteasome activity; the inhibitors of the latter were approved to cure 
different cancers and cisplatin is one of the proteasome inhibitors [84, 
85]. 

5. Conclusion 

The purple (TRFK306) tea clone was found to have the highest 
concentration of EGCG. This underlines the observed high activity on 
different gene expressions and high activity when combined with 
cisplatin in the TNBC cell line 4T1. In silico study showed that SMILES of 
4 different catechins target different genes in TNBC and have high 
binding affinity to the receptor-binding pocket of chain A of EGFR 
Extracellular Domains; this in silico study was followed by the laboratory 
experimental study for gene expression assessment. 

Table 3 
The binding affinity of catechins onto the receptor-binding pockets of chain A of 
1IVO. The binding affinity energy of SMILES of 4 catechins are expressed in 
Kcal/mol.  

Compound Binding 
energy 
(Kcal/ 
mol) 

RMSD 
l.b. 

RMSD 
u.b. 

Residue in 
contact 

Interaction 
type 

EC − 8.2 
− 7.8 

0.00 
0.821 

0.00 
1.535 

Thr339, Tyr292, 
Arg310, Lys311, 
Ser291, Gly288, 
Cys287, Ser340, 
Lys375, Glu376, 
Val312, Glu293, 
Ala286, Thr378 

10 Van der 
Waals, 4 
conventional 
hydrogen 
bonds and 1 Pi 
alkyl 

EGC − 8.4 
− 8.4 

0.00 
0.005 

0.00 
1.774 

Thr339, Tyr292, 
Arg310, Lys311, 
Thr378, Cys287, 
Ser340, Lys375, 
Glu376, Val312, 
Glu293, Ser291, 
Gly288, Ala286 

9 Van der 
Waals, 3 
conventional 
hydrogen 
bond, 1 
unfavourable 
donor-donor 
bond and 1 Pi 
alkyl 

ECG − 8.1 0.00 0.00 Met294, 
Arg300, Glu295, 
Lys375, Glu376, 
Glu293, Thr378, 
Tyr292, Cys287, 
Gly288, Ser340, 
Val312, Arg310, 
Lys311, Thr339 

9 Van der 
Waals, 5 
conventional 
hydrogen 
bond, 2 
unfavourable 
donor-donor 
bonds, 1 Pi-pi 
T-shaped,2 pi- 
alkyl 

− 8.1 1.523 1.774 

EGCG − 8.3 0.00 0.00 Val36, Ala62, 
Asn86, Ala265, 
Phe230, Leu38, 
Arg84, Lys229, 
Cys227, Val226, 
Glu60, Lys4, 
Val6, 
Arg231Thr266, 
Glu3 

7 Van der 
Waals, 7 
conventional 
hydrogen 
bonds, 1 
carbon 
hydrogen 
bond, 1 
unfavourable 
donor-donor 
bond, 3 Pi- 
alkyl, 1 pi- 
cation, 1 pi- 
anion 

− 8.3 0.005 1.448 

RMSD: root-mean-square deviation, is calculated based on the best mode of 
binding and uses only the heavy atoms; two types of RMSD are presented: l.b, 
lower bound; u.b. Upper bound. 
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Fig. 8. Binding modes of catechins onto binding-receptor pockets of 1IVO. A. binding mode of EC (left: 3D diagram, right: 2D diagram). B. Binding mode of EGC (left: 
3D diagram, right: 2D diagram); C. Binding mode of ECG (left: 3D diagram, right: 2D diagram). D. Binding mode of EGCG (left: 3D diagram, right: 2D diagram). 
Different interactions: van der Waals (light green), conventional hydrogen bond (green), carbon-hydrogen bond (very light green), unfavourable donor-donor bond 
(red), Pi-Pi T-shaped (purple), Pi-alkyl (light purple), pi-cation (orange) pi-anion (orange). 

Fig. 9. Expression levels of 8 different genes. Gene expression levels were assessed after exposure times of 24 h, 48 h and 72 h. Effects of a combination of catechin 
extract from BB35 tea clones and cisplatin and the combination of catechin extracts from purple tea and cisplatin on gene expression levels were assessed at an 
exposure time of 48 h (we considered the exposure time as those combinations had shown high antiproliferative activities than in other exposure times). The samples 
with the same letters on the top of bar plots, in the same exposure times mean that there are no significant differences. The data are represented as the means ± SD 
(N = 3 biological replicates). *p < 0.05, **p < 0.001, ***p < 0.0001 and ****p < 0.0000. 
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